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Abstract
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1 Introduction

Are workers in more economically diverse cities better or worse off when their industry or occupation

faces a labor demand shock? We argue that answering this question requires accounting for the full

range of options available to workers, including staying in the same job, switching locally to another

occupation-industry pair, or to non-employment, or relocating to a different city. In this paper, we

develop an approach to capture these effects by deriving sufficient statistics for a second-order approx-

imation of local welfare changes within a standard dynamic discrete choice (DDC) framework. Using

rich worker flows data from France, we show that economic diversity across cities generates sizable

welfare insurance gains for workers.

Figure 1. Local Economic Diversity and Nonspatial Labor Reallocation in France

(a) Nonspatial Mobility and Sector-Occupation HHI (b) Labor Market Concentration (HHI) Map

Notes: The left panel, Figure 1a, shows a scatter plot of the sector-occupation Herfindahl-Hirschman Index (HHI) of a
commuting zone in France and a measure of nonspatial labor reallocation: the share of local employment that switches to
another occupation, sector or both without moving to a new location. The right panel, Figure 1b, shows a map of French
commuting zones and their sector-occupation HHI.

Figure 1 illustrates the central idea of the paper: cities with more diverse local economies experience

more worker reallocation within the city. Panel 1a relates sector-occupation concentration, measured

using the Herfindahl-Hirschman Index (HHI), to non-spatial labor flows, defined as the share of local

employment that switches occupation, sector, or both without moving. Cities with lower HHI, that is,

more economically diverse cities, exhibit higher local churn, meaning a larger share of workers change
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jobs within the same city. Panel 1b maps French commuting zones by their sector-occupation HHI,

highlighting substantial variation in local economic diversity.

Building on this, we analyze how worker flows, both within and across cities, respond to local labor

demand shocks, and how local economic diversity shapes this response. We then use these estimates as

theory-consistent sufficient statistics to evaluate the welfare value of diversity. Our main finding is that

more diverse cities are more resilient to negative local labor demand shocks, providing residents with

significant insurance benefits.

To infer welfare, we build a revealed preference argument based on a standard DDC model: welfare

changes can be approximated using observed baseline choice probabilities and their dynamic response

to shocks, following the convex-analytic approach of Chiong, Galichon and Shum (2016). Our main

theoretical result shows that welfare changes equal a weighted sum of changes in choice probabilities

to first order, and, to second order, they depend on the covariance of choice adjustments and the cross-

elasticities between alternatives.

We apply this framework to data on French workers’ employment histories, constructing flows across

location–industry–occupation cells. Using Bartik-style demand shocks and local projections-IV (Jordà,

2005), we trace both gross and net worker flows and separate spatial from non-spatial adjustments.

We find that local economic diversity significantly shapes labor market responses. After negative

shocks, diversified cities experience a smaller drop in within-city churn and less severe net inflow con-

tractions, suggesting that diversity provides a form of insurance. Responses to positive shocks are more

symmetric: churn reacts similarly across cities, while net inflows are only slightly larger in diversified

cities. In short, concentrated cities face deeper downturns and only modestly stronger expansions.

Finally, we use our theoretical framework to translate these flow responses into welfare terms and

find a sizable “insurance value” of local economic diversification, as captured by the second-order term.

Overall, our approach has two main advantages. (i) It relies only on observed choice probabilities

and imposes less structure than a fully specified model, and is therefore less dependent on functional

form assumptions. (ii) Its second-order approximation decomposes welfare changes into a part due to

average utility changes and an insurance term due to comoving reallocation across choices.

This paper contributes to several research strands: First, our paper contributes methodologically

to the literature evaluating the welfare consequences of shocks using approximations and sufficient

statistics.1 Closest to our paper, Kim and Vogel (2020) develop a methodology to approximate first-
1See, for example, Deaton (1989), Kim and Vogel (2020), Atkin, Faber and Gonzalez-Navarro (2018), Baqaee and

Burstein (2023), Allen et al. (2022), Baqaee and Farhi (2020), Kleinman, Liu and Redding (2021), Porto (2006), Wolf
and McKay (2022), and Beraja (2023).
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order welfare differences in the context of a static model using a sufficient statistic approach applied

to U.S. commuting zones. Our paper builds on advances in the DDC literature from Chiong, Galichon

and Shum (2016) to derive higher-order welfare change approximations that leverage the dynamics

and composition of worker choice probabilities across more adjustment margins. Relative to models of

the labor market that fully specify the worker’s reallocation choice (e.g., Artuç, Chaudhuri and McLaren

(2010); Caliendo, Dvorkin and Parro (2019)), our framework is lighter on assumptions: it recovers

continuation values directly from conditional choice probabilities and delivers a transparent welfare

decomposition into first- and second-order terms. The flip side is that it does not identify underlying

fundamentals or allows for counterfactual analysis. We illustrate the approach by combining LPIV

estimates from rich worker flows data in France to construct theory-consistent welfare measures and to

derive the insurance value of local economic diversity.

Second, the paper contributes to an extensive literature on labor flows across cities and sectors in

response to employment shocks following the canonical study by Blanchard and Katz (1992).2 Stud-

ies such as Monte, Redding and Rossi-Hansberg (2018) and Marinescu and Rathelot (2018) highlight

the heterogeneity in local employment elasticity and worker mobility preferences. The literature on

adjustments to trade-induced shocks also highlights the role of spatial, sectoral composition and oc-

cupational adjustments. See, for example, Autor et al. (2014), Ebenstein et al. (2014), Fuchs (2021),

Kondo (2018) and Traiberman (2019), among others. Disciplined by the DDC theory, we use rich

industry-occupation-location worker flow data in France to document sizable asymmetries in the dy-

namic adjustment patterns of workers across their spatial and non-spatial options and estimate signifi-

cant heterogeneity across labor markets with different degrees of economic diversity. We combine these

estimates through the lens of our theory to suggest a significant insurance component in the welfare

value of economically diverse labor markets.

The remainder of this paper is structured as follows: Section 2 introduces our approach to mea-

sure welfare implications of shocks using sufficient statistics, Section 3 introduces the data, provides

summary statistics on worker flows in France, and covers our analysis of local projections on worker

adjustments. Section 4 introduces our welfare results, and Section 5 concludes.

2 Theory

We begin from the simple observation that workers face dynamic and discrete choices—staying, switch-

ing sectors within a city, or moving—where switching costs and option values make decisions forward-
2See Dao, Furceri and Loungani (2017) for a recent update of Blanchard and Katz (1992) for the U.S.
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looking. A dynamic discrete choice (DDC) framework is therefore natural for tracing how local shocks

propagate into reallocation and welfare. DDC models are widely used in labor and trade economics

because they link observed worker flows to welfare in a theory-consistent way. We build on recent

convex-analytic identification results for DDC models (Fosgerau et al., 2021; Chiong, Galichon and

Shum, 2016) and measure welfare via the social surplus, the expected value of the menu of choices

facing an agent. Put plainly, given what a worker can do today and tomorrow, how do changes in local

labor-market conditions shift overall welfare? We first lay out the general DDC environment and then

present our key surplus approximation, which we use to quantify the value of economic diversity across

cities.

2.1 Welfare in Dynamic Discrete Choice Models: An Approximation

We use a DDC model that describes how workers choose among discrete options over time, taking into

account costs and benefits of each choice.

Setup. Time is discrete and there are infinite periods. The state variable is x ∈ X and agents choose

between a finite number of actions y ∈ Y . The single period utility flow of choosing y is given by

ūy(x)+ϵy where ϵy denotes an i.i.d additive utility shock. The set of utility shocks is assumed to follow a

joint distribution functionQ(·; x). Following Rust (1987), we assume conditional independence. Agents

are dynamic optimizers facing the following problem:

y ∈ argmax
ỹ∈Y

¦

ū ỹ(x) + ϵ ỹ + βEx ′,ϵ′
�

V̄
�

x ′,ϵ′
�

| x , ỹ
�

©

,

where β is the discount factor and primes denote next period values. Note that V (x ′) is the expectation

of V̄ (x ′,ϵ′): V (x ′) ≡ Eϵ′ V̄ (x ′,ϵ′). We assume time-homogeneous dynamics (i.e. constant transition

kernel Pr(x t+1 | x t , yt) and distributionQ), and dropped time subscripts for simplicity. We define choice-

specific continuation values as:

w y(x)≡ ūy(x) + βEx ′
�

V
�

x ′
�

| x , y
�

,

which captures the total expected value of selecting y today, including future payoffs.3

Approximating Welfare. To summarize expected welfare in this environment, we use the social sur-

plus function, which is the expected maximum utility across all possible choices:
3Note that w y is the ex ante value of an option y , that is before the realization of the preference shock ϵ.
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G (w; x) = E
�

max
y∈Y

�

w y (x) + ϵy

�

| x
�

, (1)

where the expectation is taken over the distribution of utility shocks. Because we take an expectation

over the shocks, this object summarizes ex-ante welfare and is a smooth function of w. Importantly, the

social surplus function is well-behaved (finite, convex, differentiable), which allows us to use a second-

order Taylor expansion to approximate how welfare changes when continuation values or choice proba-

bilities shift.4 The following proposition gives a second-order Taylor approximation of G , showing how

welfare changes relate to changes in continuation values and choice probabilities. Detailed derivations

are in Appendix D.1.

Proposition 1 (Approximate Social Surplus). We have,

d lnG (w; x) =
∑

y

ωy (x)d ln w y +
1
2

∑

y

∑

y ′
ϱ

p,w
y,y ′ωy (x)d ln w yd ln w y ′ + o(·)

where ωy (x) =
py (x)w y (x)
G (w;x) is a weight that measures the relative contribution of choice y to the expected

welfare and where ϱp,w
y,y ′ ≡

∂ ln py

∂ ln w y′
=

∂ py

∂ w y′

w y′

py
is the elasticity of the choice probability py with respect to

changes in the choice-specific continuation value w y ′ .

Insights and Limitations. Proposition 1 implies that approximating welfare changes requires three

ingredients: (i) changes in continuation values {dln w y}; (ii) the cross–elasticity matrix {ϱ
p,w
y,y ′}; and (iii)

baseline welfare weights {ωy}. The second–order component emphasizes that it is the covariance struc-

ture of option–specific changes in continuation values—interacting with cross–elasticities—that drives

curvature. In more economically diverse locations, option payoffs tend to move less in lockstep, re-

ducing that covariance and attenuating curvature (i.e., offering insurance). However, to implement

this approximation, two challenges arise: continuation values are unobserved, and cross-elasticities are

high-dimensional.

Dual Approach via the Legendre-Fenchel Conjugate. To circumvent these challenges, we use the

Legendre-Fenchel conjugate of G . Intuitively, the Legendre-Fenchel conjugate offers a dual perspective:

instead of asking “what choice probabilities follow from given utilities?”, it allows us to ask “what utilities

are consistent with observed choice probabilities?”. Chiong, Galichon and Shum (2016) show how this

inversion lets us recover continuation values non-parametrically from observed choice probabilities,
4Assuming a continuous shock distribution with finite moments ensures that G (w; x) is finite, convex, differentiable, and

has a well-defined convex conjugate.
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without imposing a specific functional form on flow utilities. The conjugate is defined as follows:

G ∗(p; x) = sup
w∈RY

¨

∑

y∈Y

py (x)w y (x)−G (w; x)

«

(2)

where the vector p denotes the choice variable of the conjugate G ∗. Therefore, w and p are connected

through convex duality: p can be seen as the shadow prices associated with w, and vice versa. Moreover,

since duality holds, we can approximate the convex conjugate for an equivalent welfare approximation,

which we summarize in the following proposition:5

Proposition 2 (Approximate Conjugate Social Surplus). We have,

d lnG ∗(p; x) =
∑

y

ω∗y (x)d ln py +
1
2

∑

y

∑

y ′
ϱ

w,p
y,y ′ω

∗
y (x)d ln pyd ln py ′ + o (·)

where ω∗y (x) =
w y (x)py (x)
G ∗(p;x) is a weight that measures the relative contribution of choice y to the conju-

gate social surplus function G ∗ and where ϱw,p
y,y ′ ≡

∂ ln w y′

∂ ln py
=

∂ w y′

∂ py

py

w y′
is the inverse elasticity of the choice

probability py with regard to changes in the choice-specific continuation value w y ′ .

Proposition 2 is an equivalent, but empirically more convenient approximation of the social surplus.

First, it works with changes in choice probabilities (dln py), which are observed and estimated directly

in our data, instead of changes in continuation values (dln w y). Second, following Chiong, Galichon and

Shum (2016), the dual representation provides a simple “mass–transport” inversion that maps observed

p into the continuation values w needed for the weights—no logit assumption required. Finally, because

our primary interest is in understanding how economic diversity affects welfare, we use this framework

to derive closed-form expressions that link welfare gains from diversification directly to the local HHI.

As we show in more detail in Appendix D.3, the following can be derived:

Corollary 1 (Value of Insurance and Diversification). Consider a vector of shocks s = {sm}m ≡ {d ln wm}m
with mean E[s] = 0, and covariance Σ = E[ss⊤]. Assume the cross-elasticity of conditional choice prob-

abilities
�

ϱ
p,w
k,m|ℓ =

∂ ln pk|ℓ
∂ ln wm|ℓ

�

are iso-elastic such that ϱp,w
k,m|ℓ ≡ −γℓ pm|ℓ + γℓ1{m=k}. The expected welfare

change from such shock is

E[d ln WC ] =
1
2

∑

ℓ∈C

πℓγℓ

�

∑

m

λm|ℓΣmm −λ⊤ℓ Σλℓ

�

,

5Note that we require strictly positive conditional choice probability and continuation values, with G strictly convex
and twice continuously differentiable, so that Hessians and cross-elasticities exist, as shown in Chiong, Galichon and Shum
(2016). Moreover, in non-stationary settings, the method can be applied period by period using the corresponding Taylor
coefficients, though at the cost of recomputing sufficient statistics each period.
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where λm|ℓ ≡
wm|ℓ
Gℓ

pm|ℓ are welfare share weights and πℓ are local population shares.

Furthermore, under a constant substitution elasticity (γℓ ≡ γ), and equicorrelated shocks such that

Σmm = σ2 and Σmk = νσ2 for m ̸= k, the expected welfare gains are proportional to the shock variance

and decreasing in market concentration:

E[d ln WC ] =
γ

2
σ2(1− ν)(1−HHIC ),

where HHIC ≡
∑

ℓπℓ

∑

m

λ2
m|ℓ

︸ ︷︷ ︸

HHIℓ

is a market concentration index.

Motivated by this corollary, we use the HHI statistic as a proxy for economic concentration in the

empirical section in order to trace and quantify differences across locations in this insurance term.6

Taking Stock. Proposition 2 clarifies the methodological advantages of the mass-transport sufficient-

statistics approach and provides an empirically convenient representation of the worker’s conjugate

social surplus. The first-order term now depends on welfare weights (ω∗y) and impulse responses of

choice probabilities (d ln py). The second-order term involves own and cross-price elasticities (ϱ
w,p
y,y ′),

which can be calibrated once an iso-elastic labor supply system is assumed, as discussed below. Our

approach presents the advantage that it recovers welfare weights (ω∗y) non-parametrically and uses

simple reduced-form estimation to obtain choice probability impulse responses. The implied second-

order expansion also isolates direct effects from the insurance value of economic diversity.7

Two important limitations remain. First, as with other sufficient-statistics methods, the analysis

recovers only relative welfare changes across locations and does not pin down absolute welfare lev-

els. Second, while the framework provides a detailed account of workers’ adjustment choices within

segmented labor markets, it abstracts from additional dynamic decisions such as intertemporal con-

sumption and saving. With these strengths and caveats in view, the next section applies the framework

to assess the resilience of French local labor markets to demand shocks.
6Strictly speaking, the concentration index HHIC ≡=

∑

ℓπℓHHIℓ =
∑

ℓπℓ
∑

mλ
2
m|ℓ in Corollary 1 is not the HHI in C

using the local shares πℓ, but an average of HHI-like indexes computed using welfare weights λm|ℓ as shares.
7Note that Chiong, Galichon and Shum (2016) introduce the conjugate duality approach we use, which maps observed

choice probabilities to unobserved choice-specific values. This avoids the need to control for continuation values or specify
the shock distribution, unlike Artuç, Chaudhuri and McLaren (2010). They recast the problem as a mass transport problem
and develop an estimator, the “mass transport approach (MTA)”, to recover a reference vector G (w0) ≡ 0. Choice-specific
values are determined only up to a constant, typically resolved by setting a reference option without loss of generality in
static settings.
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3 Adjustment to Labor Demand Shocks

Our approximation provides a practical strategy to quantify how labor demand shocks affect worker

welfare. Guided by Proposition 2, we estimate worker flow responses to local shocks and examine how

local sectoral and occupational diversity shapes these responses. Using a large, representative sample of

French employment spells, we construct worker flows across locations, industries, and occupations. We

also build a standard labor demand shock and estimate the impulse responses of spatial and nonspatial

adjustment margins using local projection IVs (LPIV). We then document significant heterogeneity in

worker flow responses, illustrating how city-level economic diversity potentially shapes welfare.

3.1 Data: Worker Flows in France

Data. Our data on French workers’ employment histories comes from the DADS (Déclarations An-

nuelles de Données Sociales) administrative panel, maintained by INSEE (the French National Institute

of Statistics and Economic Studies). The DADS Fichier Postes contains mandatory Social Security fil-

ings for all salaried employees in private and semi-public firms in France.8 The DADS Panel follows

workers born in October of even years, covering about 4 percent of the private-sector workforce. This

panel allows us to track individual workers across all non-public-sector employment spells from 2005

to 2019.9

Each record provides a worker’s establishment, including a unique identifier, 4-digit industry, and

municipality. This allows us to observe transitions across sectors, occupations, and geographic locations,

which is crucial for our analysis. For each spell, we define the sector using the establishment’s 2-digit

industry code, the occupation using the 2-digit INSEE occupation code, and the location as the “Zone

d’Emploi” (commuting zone) derived from the establishment’s postal code. The final dataset contains

30 occupations, 90 sectors, and 300 geographic areas, which we refer to as “cities” for simplicity.

ConstructingWorker Flows. For each quarter t, we assign every active worker to a unique city-sector-

occupation (i, s, o) cell, keeping the job with the longest duration.10 Quarters with no recorded activity

are classified as “non-employment,” a broad category that includes standard unemployment and exits

from the private-sector labor force.

We define “job-to-job” transitions as cases where aworker’s assigned labormarket in t+1 differs from

that in t. Following our DDC framework, we use directed gross flows rather than net flows, constructing
8DADS excludes the self-employed, central government employees (Fonction Publique d’État), and domestic workers.
9As in Traiberman (2019), we restrict the sample to individuals aged 23–64.
10If two jobs have the same duration, we select the one with the higher salary; if salaries are equal, we choose the job

with more hours worked.
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both (i) the stock of workers in each labor market and (ii) the full matrix of worker flows between every

pair of markets, including transitions to and from non-employment.11

Anatomy of Worker Reallocation in France. Table 1 reports key moments of city-level worker flows.

In the median French city, 4.5% of workers switch labor-market affiliation each quarter in at least

one dimension: city (i), sector (s), or occupation (o)—equivalent to roughly 18% per year.12 Rows

2–4 disaggregate flows by dimension, showing that 65% of switches involve changing occupation, 60%

involve changing sector, and nearly half involve changing city.

Figure A.1 further decomposes flows by all combinations of city, sector, and occupation changes.

Nonspatial moves (Figure A.1a) are more common than spatial ones (Figure A.1b), with occupation

switches dominating overall. Nonspatial reallocation, particularly occupation-only switches, varies

much more across cities than spatial reallocation.

Table 1. Quarterly worker reallocation across markets

Median SD p5 p25 p75 p95

1. Flowsi,s,o
Empi

4.54 % 0.98 3.21 % 3.90 % 5.35 % 6.10 %

2. Flowsi→i′

Flowsi,s,o
48.95 % 9.79 34.32 % 41.48 % 56.14 % 65.65 %

3. Flowss→s′

Flowsi,s,o
61.29 % 4.34 53.58 % 58.92 % 63.82 % 66.64 %

4. Flowso→o′

Flowsi,s,o
64.91 % 4.74 57.36 % 62.19 % 67.10 % 70.29 %

5. Flowsne→e
Empi

3.22 % 1.70 2.10 % 2.70 % 4.21 % 7.62 %
Notes: The displayed values are expressed for the cross-section of locations or cities. Flows are computed at
the quarterly frequency. Sub-indices are defined as follows: i denotes cities, s sectors and o occupations. Row
1 shows the share of workers initially in a local labor market switching jobs across any dimension. Rows 2 to
4 display the share of switchers that change at least in the sub-indiced dimension. They do not sum to 100 as
they allow for the two other dimensions to change as well, thereby causing overlap. Row 5 shows the share of
workers leaving non-employment. It encompasses both new job-seekers and those exiting the labor force.

3.2 Estimation Methodology

LPIV. We estimate average dynamic responses of city-level outcomes to labor demand shocks using

the local projection method of Jordà (2005) for h= 0, . . . , 20 quarters:

∆yi,t+h = α
h + γt + γi + βh Shocki,t +

8
∑

m=1

γh
m yi,t−m +

8
∑

m=1

ωh
m Shocki,t−m+

8
∑

m=1

δh
m Zi,t−m (3)

11Because DADS covers only the private sector, flows into and out of non-employment include transitions to and from
public-sector jobs and self-employment.
12Our estimate (18%) is somewhat higher than the 13% reported by Traiberman (2019) for Denmark, who track occupa-

tion and sector but not geographic moves.
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where ∆yi,t+h = log
�

yi,t+h

�

− log
�

yi,t−1

�

and yi,t+h is the cumulative value at time t + h since t − 1.13

Shocki,t is an exogenous local shock and Zi,t denotes controls for various local labor market variables:

the share of total flows to local employment, the local labor force, and ratios of city-level local churn,

inflows, and outflows relative to all flows. γi and γt are city- and time-fixed effects accounting for cross-

sectional heterogeneity and common macroeconomic shocks. Standard errors are Driscoll-Kraay, and

we allow for m= 1, . . . , 8 quarters of auto-correlation–a standard temporal correlation window of two

years.

Constructing Labor Demand Shocks. We use a shift-share approach (Bartik) to generate plausibly

exogenous labor demand shocks at the city level. We compute national employment growths for each

sector-occupation pair (s, o) and construct the labor demand shock in city i as:

Bartiki,t =
∑

s,o

shares,o
i,2004 · g

national
−i,s,o,t (4)

where shares,o
i,2004 = Ei,s,o,t=2004/

∑

s′,o′ Ei,s′,o′,t=2004 are within-location (i) shares of sector-occupation

(s, o) cells and g−i,s,o,t are leave-one-out sector-occupation employment growths in 2004.Figure A.2

shows the distribution of sector-occupation shocks. Cities are on average exposed to more positive than

negative shocks, and some of them experience large changes of up to -5 or +10 %.

3.3 Beyond Net Employment: The Dynamics of Gross Flows

Our worker flows data allow us to unpack the net employment response to labor demand shocks by

revealing the underlying gross flows. Examining net flows provides a clear lens into how employment

adjusts across cities, sectors, and occupations, beyond what aggregate employment changes alone can

show. City-level adjustments are presented in Figure 2.14 The left panel (Figure 2a) shows average

gross spatial flows—city inflows and outflows—while the right panel (Figure 2b) shows spatial and

nonspatial flows. Nonspatial flows include all worker transitions that do not involve a change of city,

whereas spatial net flows are defined as inflows minus outflows, capturing employment changes before

accounting for local unemployment or exits from private sector employment.

Following a labor demand shock, inflows rise immediately, steadily increasing and remaining ele-

vated throughout the horizon. Outflows respond with a lag of roughly two years, then rise sharply and
13When the y outcome concept is a stock (e.g. employment levels) rather than a flow (e.g. location-changing workers),

we simply take the log differences in the levels from t − 1 to t. When the outcome concept is a flow, yt+h is constructed as
the cumulative sum of the period-specific flows.
14Table A.2 reports results for additional margins listed in Table 1.
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persist.15 Nonspatial flows initially match spatial flows but exceed them after a few quarters, highlight-

ing the importance of local job reallocation.

Figure 2. Average Response to a Bartik shock: Spatial and Nonspatial Flows

(a) Gross Spatial Flows (b) Spatial and Nonspatial Flows

Notes: Figure 2a shows the gross flow of workers that move out of a city (solid line) and the gross flow of workers that move
in a city (dashed line). Figure 2b shows the net flow of workers that move in a city minus the ones that leave (solid line)
and the average flow of workers that reallocate within a city (dashed line).

3.4 The Asymmetric Role of City-Level Economic Diversity

Motivated by the insights from the second-order approximation in Section 2, we posit that city-level

economic diversity plays an important role in shaping how worker flows respond to labor demand

shocks.16 We augment the baseline dynamic LPIV with asymmetric and heterogeneous effects. We

measure city-level economic concentration (the opposite of diversity) using the standard Herfindahl-

Hirschman Index (HHI) defined over sectors and occupations as

HHIi =
∑

s,o

�

shareso
i,t=2004

�2
, (5)

where shares,o
i,t=2004 is the share of locality i’s workers employed in a sector-occupation pair (s, o) in 2004.

Lower HHI indicates a more diverse labor market, with employment spread across multiple sectors and

occupations, while higher HHI reflects a more concentrated economy
15The delayed positive outflow response may reflect incomers replacing existing workers or unobserved shocks in neigh-

boring cities.
16In Section D.3 in the appendix, we show that, under certain orthogonality conditions in our theoretical framework, the

HHI mediates the insurance value of city-level diversity.
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We separate positive shocks (B+i,t) and negative shocks (B
−
i,t), as workers may respond differently

depending on the shock’s sign.17 Both variables only take non-negative values and are interacted with

local HHIi measures:

∆yi,t+h = α
h + γt + γi + β

−
h × B−i,t +ψ

−
h

�

B−i,t ×HHIi
�

+ β+h × B+i,t +ψ
+
h

�

B+i,t ×HHIi
�

(6)

+
8
∑

m=1

γh
m yi,t−m +

8
∑

m=1

ωh
m B i,t−m +

8
∑

m=1

δh
m Zi,t−m .

This specification shows how worker flows respond differently to positive and negative shocks (asym-

metric) and how these responses vary with city-level economic diversity (heterogeneous).18 While both

the HHI and the shift-share instrument use sectoral shares, Figure A.4 shows that the distribution of

Bartik shocks is very similar across highly concentrated (high HHI) and highly diversified (low HHI)

cities.

Figure 3. Asymmetric and Heterogeneous Response: Positive/Negative Shocks × High/Low HHI

(a) Nonspatial (b) Spatial

Notes: Figure 3a shows the differential response of nonspatial flows to a negative/positive labor demand shock for low-
HHI (dashed blue/green lines) and high-HHI cities (solid blue/green lines). Figure 3b shows the differential response of
spatial flows to a negative/positive labor demand shock for low-HHI (dashed blue/green lines) and high-HHI cities (solid
blue/green lines).

Figure 3 shows asymmetric responses for spatial and nonspatial flows, evaluated at the 90th (high

HHI) and 10th (low HHI) percentiles of the HHI distribution. The results confirm our theoretical predic-

tion that local economic diversity shapes how labor markets transmit shocks. In more diverse (low HHI)
17We trim the top and the bottom 0.5% of the HHI for our regressions. Trimming beyond the top and bottom 0.5% does

not affect our results. Note that this trimming does not lead us to drop Paris’ commuting zone.
18Moretti and Yi (2024) highlight the interaction of education and labor market size. We control for local labor force size

and focus on illustrating our high-order welfare approximation using city-level diversity. We leave a richer set of interactions
and heterogeneous responses for future applications.
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cities, negative labor demand shocks are noticeably dampened. Both nonspatial churn (workers switch-

ing jobs within the same city) and net spatial inflows fall less compared with more concentrated cities,

suggesting that diversified local labor markets provide a buffer against employment disruptions. This

effect is substantial, highlighting that the same shock produces very different labor market dynamics

depending on the degree of local economic diversification.

By contrast, positive shocks do not exhibit a similarly asymmetric pattern: more concentrated cities

do not experience a proportionally stronger increase in inflows or nonspatial reallocation relative to

diversified cities. This asymmetry is consistent with the idea that economic diversity functions primarily

as a form of insurance, limiting the downside of negative shocks rather than amplifying the upside of

positive shocks.

Importantly, our approach provides a new lens on labor market adjustment. Combining the HHI

measure with gross worker flows offers a clearer view of labor market adjustment than net employment

changes alone, revealing how both the direction and scale of flows are systematically shaped by local

diversity.

4 From Estimation to Welfare

We now combine the approximation results from Section 2 with our estimated worker flow responses

to quantify the welfare effects of local economic diversity under labor demand shocks.

4.1 Methodology

Setup. We adapt the dynamic discrete choice framework from Section 2 to model flows across seg-

mented local labor markets. The choice set Y is defined as sector-occupation-location labor markets:

Y ≡ S ×O ×L , where S , O , and L are the sets of sectors, occupations, and locations, respectively.

Social surplus and its convex conjugate remain as in Equations (1) and (2).

To construct welfare measures from the LPIV-estimated changes in choice probabilities (d ln py), we

collapse the full set of sector-occupation-location transitions (Y ×Y ) into coarser adjustment margins:

a “stay” margin for workers who do not change their sector-occupation-location, a “local” margin for

workers who change sector or occupation within the same city, and a “spatial” margin for workers who

change city.19

19This coarser partition assumes a homogeneous response of flows within each subset: “stay”, “local”, or “spatial”.

13



ApproximatingWelfare Changes. To implement Proposition 2, three ingredients are required: (i) We

use our LPIV estimates to obtain changes in conditional choice probabilities {d ln py}y∈Y along all mar-

gins. (ii) We construct theory-consistent welfare weightsω∗y(x) =
w y (x) py (x)

G ∗(p;x) via the Mass-Transport Ap-

proach (MTA) of Chiong, Galichon and Shum (2016).20 (iii) To parsimoniously organize cross-elasticity

terms in the second-order expansion, we adopt a common elasticity γ that does not enter step (ii): the

first-order piece depends only on (p, w), while γ scales the quadratic terms. We then obtain:

d lnG ∗(p; x)
d ln z̄

≈
∑

y=stay (x),
local (x), spatial (x)

�

ω∗y (x)
d ln py(x)

d ln z̄

�

︸ ︷︷ ︸

first order approximation term

(7)

+
1
γ

∑

y=stay (x),
local (x), spatial (x)

�

ω∗y (x)

1− py (x)

�

d ln py(x)

d ln z̄

�2�

−
1

2γ

∑

y,y’=stay (x),
local (x), spatial (x)

∑

y ′ ̸=y

�

ω∗y (x)

py ′ (x)

d ln py(x)

d ln z̄

d ln py ′(x)

d ln z̄

�

︸ ︷︷ ︸

second order approximation term

as derived in Appendix D.2. Intuitively, this expression shows that the welfare impact of a labor de-

mand shock can be captured using only three key ingredients. First, the labor supply elasticity γ gov-

erns how strongly workers adjust their choices in response to local changes. Second, the baseline choice

probabilities
�

pstay (x) , pspatial (x) , plocal (x)
	

reflect the relative importance of different adjustment mar-

gins—staying in the same job, switching sectors or occupations locally, or moving to a different city.

Third, the impulse responses of these probabilities along each margin indicate how the likelihood of

staying, switching locally, or moving spatially responds to a shock:

�

d ln pstay|x (x)

d ln zℓ
,
d ln pspatial (x)

d ln zℓ
,
d ln plocal (x)

d ln zℓ

�

The first-order term captures the direct effect of the shock on welfare through changes in choice

probabilities weighted by their importance. The second-order term accounts for curvature effects, in-

cluding interactions across margins and the moderating role of labor supply elasticity. Together, these

terms provide a compact but accurate approximation of the welfare consequences of local labor demand

shocks, relying only on observed worker flows and a few structural parameters.
20The MTA solves a linear assignment problem that couples the observed CCPs with a discretized approximation to the

shock distribution Q and returns both G ∗(p; x) and a subgradient w ∈ ∂ G ∗(p; x). In our implementation, Q is specified
flexibly as a correlated multivariate distribution (i.i.d. across observations and time), discretized on S support points; we
fix the scale of Q by construction and impose the single normalization G (w; x) = 0⇔ p · w = G ∗(p; x) in each baseline
cell. Because G ∗ is positively homogeneous, the welfare objects are homogeneous of degree zero in (w, scale(Q)), so this
normalization is without loss for our comparative statics. Logit/Gumbel arises as a special case. Appendix E details the
discretization of Q, the LP, the recovery of w, and normalization.
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From Local Projections to Welfare. Following the literature, we assume γ= 2 and compute the wel-

fare effects of local labor demand shocks using our estimation results. For each city ℓ, we observe its se-

quence of annual shocks and baseline sector-occupation economic diversification index HHIℓ. Using the

LPIV estimates, we predict the implied changes in choice probabilities for each margin over the estima-

tion horizon, for the realized average shocks
�

B̃+t , B̃−t
	

:
¦

∆ ln pstay,t+h
ℓ,t ,∆ ln pspatial,t+h

ℓ,t ,∆ ln plocal,t+h
ℓ,t

©

h
.21

Finally, we cumulate welfare effects over time using a discount factor β = .99.

Table 2. Welfare Effects and Decomposition by Economy Diversification

HHI Positive Shocks Negative Shocks

Deciles First order Second order Total First order Second order Total

1st 7.10 -3.25 3.85 -1.00 -0.06 -1.06
2nd 7.18 -2.49 4.68 -1.00 -0.09 -1.09
3rd 7.03 -2.57 4.46 -0.90 -0.15 -1.05
4th 7.39 -2.82 4.57 -1.43 -0.24 -1.66
5th 6.77 -1.74 5.03 -1.82 -0.30 -2.12
6th 6.49 -0.74 5.75 -2.29 -0.33 -2.62
7th 7.36 -4.02 3.34 -2.21 -0.57 -2.78
8th 9.41 -5.82 3.59 -1.75 -0.77 -2.52
9th 8.76 -5.24 3.51 -2.20 -0.97 -3.17
10th 12.75 -6.94 5.81 -2.38 -2.55 -4.93

Notes: We set γ= 2 and discount future continuation values relative to the base period using β = 0.99:

∆lnG ∗ℓ ≡
2019Q4
∑

t=2006Q1

20
∑

h=0

β t+h−2004















∑

y= stay,
local, spatial

�

ω∗y|ℓ∆ln p y,t+h
ℓ,t

�

+
1
γ

∑

y= stay,
local, spatial

�

ω∗y|ℓ

1− py|ℓ

�

∆ln p y,t+h
ℓ,t

�2
�

−
1

2γ

∑

y,y ′= stay,
local, spatial

∑

y ′ ̸=y

�

ω∗y|ℓ

pn|ℓ
∆ln pn,t+h

ℓ,t ∆ln p y,t+h
ℓ,t

�















.

The first column denotes HHI deciles. The welfare changes are in percentage changes relative to the baseline period for
the average shock in each HHI decile bin, separately reporting the effect of positive and negative shocks. The next three
columns present, for positive shocks: the FOA term and the SOA term of the welfare formula along with their sum. The last
three columns present similar terms for negative shocks.

4.2 Results

Our welfare results are summarized in Table 2. We separately report the effect of positive and negative

shocks for all HHI deciles.22 The first-order approximation term (FOA) captures the direct welfare

21B̃+t and B̃
−
t are simple averages of

¦

B+
ℓ,t

©

ℓ
and
¦

B−
ℓ,t

©

ℓ
. To reduce the influence of HHI outliers, we use decile-average

HHI rather than each city’s own value. Due to disclosure constraints, the response of the employment stock is used to
approximate ∆ ln pstay,t+h

ℓ,t .
22We plot, in Figure A.6 in the appendix, the city-level values that are averaged decile-by-decile to create the decile-level

values reported in Table A.7.
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impact of shocks, while the second-order approximation term (SOA) reflects the insurance value that

comes from a city’s economic diversity. Overall, our findings highlight that economic diversity is a key

determinant of the heterogeneity in welfare outcomes observed across cities.23

Focusing first on positive shocks, our sufficient-statistic framework reveals that more concentrated

cities (with largest HHI values, or in higher deciles) exhibit larger first-order gains than more diversified

cities, hinting at possible gains from specialization. That said, more negative values for SOA terms

significantly alter these gains. The SOA terms are in fact large enough to revert the rising FOA gains

with HHI in the upper half of HHI deciles. These findings suggest that lack of economic diversification

also comes with negative insurance value, especially for the most specialized cities.

The effects of negative shocks strikingly confirm that economic diversity plays a substantial role in

providing insurance against adverse economic shocks. Indeed, we observe negative second-order wel-

fare effects (compared to the magnitude of the FOA terms) that increasing more strongly in magnitude

with HHI. In other words, more diversified cities are associated with significantly smaller welfare losses

from negative shocks, due to smaller change from the SOA term measuring “insurance value”. This re-

sult echoes our empirical findings in section 3.4 where we showed that, in response to negative shocks,

local non-spatial churn and net spatial inflows fall less in more diversified labor markets.

Our results underscore the importance of economic diversification as a strategy for enhancing eco-

nomic resilience: A more diversified economy may facilitate labor reallocation, reduce costly spatial

mobility, and allow for more stable employment outcomes in the face of sector- or occupation-specific

downturns.24 Perhaps more importantly, our results illustrate the applicability and usefulness of the

higher-order sufficient-statistic approach using granular worker flows that we put forward in this paper.

5 Conclusion

This paper develops a second-order sufficient-statistics framework to analyze local shocks affect workers’

welfare and applies it to the role of local economic diversity using rich worker flows data from France.

We find substantial welfare insurance gains from diversity in the face of local labor demand shocks.

At a first-order approximation, workers in more specialized cities experience larger welfare gains

from positive shocks, highlighting potential benefits of specialization. However, the second-order term,

which captures the insurance value of diversity, shows that high economic concentration entails larger
23Table A.7 provides additional decompositional results, indicating to what extent shock and HHI heterogeneity within

each HHI decile drives welfare differences.
24The spatial variation in these welfare effects is depicted in Figures A.7 and A.8 in the appendix. These figures show the

distribution of welfare outcomes under both the “first-order only” approach and the welfare outcomes when accounting for
the insurance value captured by the SOA term.
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losses from negative shocks. This underscores the crucial role of economic diversity in buffering local

labor markets against adverse shocks.

Our approach and results provide a framework for future empirical and quantitative studies of local

labor market responses, offering new insights into how city-level characteristics shape the impact of

national economic fluctuations.
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A Additional Figures

(a) Spatial mobility (b) Nonspatial mobility

Figure A.1. Mobility of workers across cities, sectors and occupations
Notes: Figure (a) illustrates the distribution (density) of workers who change cities (spatial mobility). The lines decompose
this mobility into different combinations of transitions across sectors and occupations. Specifically, i represents moves that
are purely geographic, is includes both geographic and sectoral changes, io represents geographic and occupational changes,
and iso captures changes across all three dimensions: geographic, sectoral, and occupational. Figure (b) displays the density
of workers who remain in the same city (nonspatial mobility). The lines break down non-geographic transitions, with s
representing sector-only changes, o representing occupation-only changes, and so for workers who switch both sectors and
occupations without changing location.
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Figure A.2. Distribution of Bartik shocks
Notes: This figure shows the distribution of labor demand shocks as con-
structed in Equation (4). The distribution captures the range of positive
and negative shocks affecting cities, highlighting the heterogeneity in lo-
cal labor demand changes across different regions.

Figure A.3. Distribution of HHI over the time series
Notes: This figure presents the distribution of the Herfindahl-Hirschman
Index (HHI) for local labor markets over time. It highlights key percentiles,
including the 95th (p95), 90th (p90), mean, 10th (p10), and 5th (p5)
values, offering insight into the variation in economic concentration across
cities throughout the panel period.
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Figure A.4. Density of Bartik shock by HHI Top and Bottom Quartile
Notes: This figure shows the distribution of Bartik shocks, as constructed
in Equation (4), categorized by the bottom and top quartiles of the
Herfindahl-Hirschman Index (HHI) distribution. It compares how labor
demand shocks are distributed across cities with low and high economic
concentration.

(a) HHI and nonspatial flows (b) HHI and spatial flows

Figure A.5. HHI and flows
Notes: Figure (a) displays the correlation between the Herfindahl-Hirschman Index (HHI) and the share of local employment
that transitions to another occupation, sector, or both, without leaving the locality (nonspatial flows). Figure (b) shows the
correlation between the HHI and the share of local employment that involves geographic mobility (spatial flows), reflecting
how economic concentration influences worker relocation across cities.
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Figure A.6. Welfare components: FOA, SOA, HHI
Notes: This figure presents scatterplots illustrating the relationship between the first-order approximation (FOA) and second-
order approximation (SOA) terms, as constructed in Section 4. The FOA terms represent the direct welfare impact of labor
demand shocks, capturing the immediate effects on local labor markets. The SOA terms measure the "insurance value"
derived from economic diversification, reflecting how cities with different levels of sectoral and occupational diversity buffer
the effects of these shocks.
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Figure A.7. Heterogeneous Welfare Effects (Negative)

Figure A.8. Heterogeneous Insurance (Positive)
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B Additional Tables

Table A.1. Quarterly worker reallocation across markets

Median SD p5 p25 p75 p95

Empi 693 6,396 170 380 1,633 5,252
∆Empi 0.32 % 0.26 -0.11% 0.16 % 0.47 % 0.75 %
Flowi′→i
Empi

1.67 % 0.59 1.04 % 1.32 % 2.08 % 2.89 %
Flowi→i′

Empi
1.63 % 0.58 1.01 % 1.32 % 2.00 % 2.91 %

Flows,o

Empi
2.96 % 0.66 2.11 % 2.57 % 3.48 % 4.17 %

Flowi′→i−Flowi→i′

Empi
0.03 % 0.13 -0.14 % -0.05 % 0.12 % 0.26 %

Flowne→e−Flowe→ne
Empi

0.32 % 0.32 -0.11 % 0.16 % 0.50 % 0.86 %
Notes: The displayed statistics are computed for the cross-section of French cities. The first row displays the
average distribution of employment size across local labor markets. The second row displays the average quar-
terly growth rate of employment. The following three rows show the share of spatial inflows, spatial outflows
and non-spatial flows. The last term does not display any flow direction since it does not involve any spatial
component. Hence, non-spatial outflows are equivalent to non-spatial inflows. Finally, the last two rows display
the spatial reallocation, i.e. spatial inflow minus spatial outflow, and the participation reallocation, i.e. employ-
ment inflow minus non-employment inflow.

Table A.2. Response to a labor demand shock

Emp
∑

Flowi′→i

∑

Flowi→i′
∑

Flowi′→i −
∑

Flowi→i′
∑

Flows,o

∑

Flows,o −
�∑

Flowi′→i −
∑

Flowi→i′
�

0.40*** 0.37*** 0.19** 0.18*** 0.40*** 0.23**
(0.10) (0.11) (0.09) (0.06) (0.09) (0.09)

Notes: Notes: LPIV regressions of different outcome variables on shift-share instrument at the commuting zone
level (Equation (3)). All columns indicate the cumulative responses at year 5 or quarter 20. The first column
provides the response of the employment stock. The second column provides the spatial inflow. The third column
provides the impact on the spatial outflow. The fourth column provides the impact on the net flow. The fifth
column provides the impact on all non-spatial adjustments (reallocation across sectors or occupations locally).
The last column provides the difference between non-spatial adjustments and netflows. Robust standard errors
in parentheses.
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C Additional Results
To complement the analysis in themain text, we also introduce an LPIV that identifies the heterogeneous
response, but without focusing on the asymmetric response. The estimating equation is specified as
follows:

∆yi,t+h = α
h+γt+γi+βh Shocki,t +ψh

�

Shocki,t ×HHIi

�

+
8
∑

m=1

γh
m yi,t−m+

8
∑

m=1

ωh
m Shocki,t−m+

8
∑

m=1

δh
mZi,t−m

In this equation, ∆yi,t+h represents the change in the outcome variable of interest for location i at
horizon h, allowing us to model the response over a specified time horizon. The intercept αh is a time-
specific constant that adjusts for general trends in the data, while the fixed effects γt and γi control
for temporal and spatial heterogeneity. These fixed effects are essential to ensure that the estimated
response to the shock is not biased by time-invariant location-specific factors or broader macroeconomic
trends. The key term, βh Shocki,t , captures the direct effect of the shock at time t on the outcome at
time t + h. The shock Shocki,t is an exogenous disturbance affecting location i and is assumed to vary
across locations and time. The term is furthermore interacted with the local HHIi as introduced in the
main text.
To account for persistence in the outcome and the potential for shocks to have lasting effects, the

model includes lags of both the outcome variable and the shock itself. The terms
∑8

m=1 γ
h
m yi,t−m repre-

sent the influence of past values of the outcome on current changes, while the terms
∑8

m=1ω
h
m Shocki,t−m

capture the dynamic effects of past shocks. These lagged terms allow us to model the full dynamic re-
sponse of the outcome to shocks, recognizing that the effect of a shock may persist over multiple periods.
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Table A.4. Effect of Bartik on worker reallocation

Q1 Q2 Q3 Year 1 Year 2 Year 3 Year 4 Year 5

Empi

Bartik 0.30*** 0.37*** 0.61*** 0.61*** 0.53*** 0.43** 0.60** 0.65***
(0.09) (0.07) (0.09) (0.14) (0.13) (0.16) (0.24) (0.17)

Bartik×HHIso 0.02 0.01 -0.05*** -0.06** -0.03* -0.00 -0.05 -0.05*
(0.02) (0.01) (0.02) (0.02) (0.02) (0.03) (0.04) (0.03)

Flows,o

Bartik 0.22*** 0.35*** 0.36*** 0.34*** 0.35*** 0.34** 0.35** 0.43***
(0.06) (0.10) (0.10) (0.10) (0.11) (0.13) (0.15) (0.16)

Bartik×HHIso -0.02 -0.03 -0.03* -0.03*** -0.02* -0.01 -0.00 -0.02
(0.02) (0.02) (0.02) (0.01) (0.01) (0.02) (0.02) (0.02)

Flowi′→i

Bartik 0.07 0.12** 0.35*** 0.43*** 0.37*** 0.26* 0.41*** 0.55***
(0.05) (0.06) (0.12) (0.15) (0.12) (0.14) (0.14) (0.18)

Bartik×HHIso 0.02*** 0.04*** -0.02 -0.05** -0.02 0.00 -0.02 -0.06**
(0.01) (0.01) (0.02) (0.02) (0.02) (0.02) (0.02) (0.03)

Flowi→i′

Bartik 0.03 0.12** 0.05 0.23** 0.36*** 0.37** 0.38*** 0.56***
(0.04) (0.05) (0.07) (0.10) (0.10) (0.18) (0.14) (0.12)

Bartik×HHIso -0.00 -0.02** 0.00 -0.04* -0.06*** -0.04 -0.04* -0.09***
(0.01) (0.01) (0.01) (0.02) (0.01) (0.03) (0.02) (0.02)

Observations 14,535 14,250 13,965 13,680 12,540 11,400 10,260 9,120
Notes: Notes: LPIV regressions of different outcome variables on shift-share instrument at the commuting zone
level (Equation (C)) interacted with the HHI. The first section provides the response of the employment stock.
The second section provides the response of non-spatial adjustments. The next section provides the response for
outflows. The last section provides the response of the inflow margin. Robust standard errors in parentheses.
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Table A.5. Effect of Bartik on worker reallocation

Q1 Q2 Q3 Year 1 Year 2 Year 3 Year 4 Year 5

Flowi′→i − Flowi→i′

Bartik 0.03 0.02 0.32** 0.22** -0.01 -0.13* 0.01 -0.04
(0.05) (0.06) (0.14) (0.09) (0.09) (0.07) (0.08) (0.06)

Bartik×HHIso 0.03** 0.05*** -0.02 -0.01 0.05*** 0.05*** 0.02 0.04**
(0.09) (0.01) (0.02) (0.01) (0.02) (0.01) (0.02) (0.01)

Flows,o − [Flowi′→i − Flowi→i′]

Bartik 0.20*** 0.37*** 0.06 0.14 0.36*** 0.48*** 0.35** 0.47***
(0.07) (0.09) (0.10) (0.08) (0.10) (0.17) (0.17) (0.11)

Bartik×HHIso -0.05** -0.08*** -0.01 -0.02 -0.07*** -0.06** -0.02 -0.05**
(0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.04) (0.02)

Flowi,s,o

Bartik 0.33*** 0.58*** 0.76*** 1.00*** 1.07*** 0.96** 1.13*** 1.51***
(0.10) (0.14) (0.19) (0.31) (0.26) (0.42) (0.39) (0.44)

Bartik×HHIso 0.00 -0.00 -0.05* -0.11** -0.10*** -0.04 -0.06 -0.16**
(0.03) (0.03) (0.03) (0.05) (0.04) (0.06) (0.05) (0.06)

Flowne→e − Flowe→ne

Bartik 0.30*** 0.43*** 0.31** 0.37*** 0.50*** 0.52*** 0.54** 0.68***
(0.08) (0.07) (0.14) (0.13) (0.09) (0.17) (0.12) (0.09)

Bartik×HHIso -0.01 -0.05*** -0.04 -0.05** -0.07*** -0.04 -0.07* -0.09***
(0.01) (0.02) (0.03) (0.02) (0.02) (0.03) (0.03) (0.02)

Empi − Flowi′→i − Flowi→i′

Bartik 0.53*** 0.80*** 0.70*** 0.74*** 0.88*** 0.89*** 0.93** 1.12***
(0.12) (0.13) (0.15) (0.19) (0.18) (0.27) (0.35) (0.26)

Bartik×HHIso -0.03 -0.08*** -0.07** -0.08*** -0.10*** -0.06** -0.07 -0.11***
(0.03) (0.02) (0.03) (0.03) (0.03) (0.03) (0.05) (0.03)

Observations 14,535 14,250 13,965 13,680 12,540 11,400 10,260 9,120
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Table A.6. Welfare Effects and Decomposition by Economy Diversification

HHI Positive Shocks Negative Shocks

Deciles First order Second order Total First order Second order Total

1st 3.54 -1.94 1.60 -0.44 -0.03 -0.46
2nd 3.70 -1.50 2.20 -0.42 -0.04 -0.46
3rd 3.71 -1.55 2.15 -0.35 -0.07 -0.42
4th 3.86 -1.70 2.16 -0.56 -0.10 -0.66
5th 3.64 -1.06 2.58 -0.69 -0.13 -0.82
6th 3.50 -0.46 3.04 -0.90 -0.14 -1.04
7th 3.91 -2.38 1.53 -0.85 -0.23 -1.08
8th 5.02 -3.41 1.61 -0.70 -0.31 -1.01
9th 4.75 -3.06 1.69 -0.84 -0.39 -1.23
10th 6.92 -3.97 2.95 -0.92 -0.99 -1.91

Notes: We set γ= 2 and discount future continuation values relative to the base period using β = 0.9:

∆lnG ∗ℓ ≡
2019Q4
∑

t=2006Q1

20
∑

h=0

β t+h−2004















∑

y= stay,
local, spatial

�

ω∗y|ℓ∆ln p y,t+h
ℓ,t

�

+
1
γ

∑

y= stay,
local, spatial

�

ω∗y|ℓ

1− py|ℓ

�

∆ln p y,t+h
ℓ,t

�2
�

−
1

2γ

∑

y,y ′= stay,
local, spatial

∑

y ′ ̸=y

�

ω∗y|ℓ

pn|ℓ
∆ln pn,t+h

ℓ,t ∆ln p y,t+h
ℓ,t

�















.

The first column denotes HHI deciles. The welfare changes are in percentage changes relative to the baseline period for
the average shock in each HHI decile bin, separately reporting the effect of positive and negative shocks. The next three
columns present, for positive shocks: the FOA term and the SOA term of the welfare formula along with their sum. The last
three columns present similar terms for negative shocks.
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Table A.7. Extended Welfare Effects and Decomposition by Economy Diversification

HHI Positive Shocks Negative Shocks

Deciles FOA (Avg) FOA (Obs) ∆ Exposure SOA Total FOA (Avg) FOA (Obs) ∆ Exposure SOA Total

1st 7.03 7.10 0.07 -3.25 3.85 -1.53 -1.00 0.54 -0.06 -1.06
2nd 7.20 7.18 -0.02 -2.49 4.68 -1.56 -1.00 0.56 -0.09 -1.09
3rd 7.34 7.03 -0.31 -2.57 4.46 -1.58 -0.90 0.68 -0.15 -1.05
4th 7.49 7.39 -0.11 -2.82 4.57 -1.61 -1.43 0.18 -0.24 -1.66
5th 7.68 6.77 -0.91 -1.74 5.03 -1.64 -1.82 -0.19 -0.30 -2.12
6th 7.82 6.49 -1.33 -0.74 5.75 -1.66 -2.29 -0.63 -0.33 -2.62
7th 7.96 7.36 -0.60 -4.02 3.34 -1.68 -2.21 -0.54 -0.57 -2.78
8th 8.19 9.41 1.22 -5.82 3.59 -1.71 -1.75 -0.04 -0.77 -2.52
9th 8.53 8.76 0.22 -5.24 3.51 -1.76 -2.20 -0.44 -0.97 -3.17
10th 10.28 12.75 2.47 -6.94 5.81 -2.03 -2.38 -0.35 -2.55 -4.93

Notes: We set γ= 2 and discount future continuation values relative to the base period using β = 0.99:

∆lnG ∗ℓ ≡
2019Q4
∑

t=2006Q1

20
∑

h=0

β t+h−2004

�

∑

y∈{stay, local, spatial}

ω∗y|ℓ∆ln p y,t+h
ℓ,t

︸ ︷︷ ︸

FOA

+
1
γ

∑

y

ω∗y|ℓ

1− py|ℓ

�

∆ln p y,t+h
ℓ,t

�2

︸ ︷︷ ︸

SOA (own)

−
1

2γ

∑

y ̸=y ′

ω∗y|ℓ

py ′ |ℓ
∆ln p y ′ ,t+h

ℓ,t ∆ln p y,t+h
ℓ,t

︸ ︷︷ ︸

SOA (cross)

�

.

The first column reports HHI deciles. We separately report positive and negative shocks. For each shock sign, the five
columns are: (i) FOA (Avg): first-order welfare computed using a common shock path and decile-mean HHI (holds exposure
heterogeneity fixed); (ii) FOA (Obs): first-order welfare using each decile’s observed HHI and exposure; (iii)∆Exposure≡ FOA
(Obs) − FOA (Avg), which isolates the contribution of exposure heterogeneity; (iv) SOA: second-order term (own and cross
components combined); (v) Total = FOA (Obs) + SOA. All entries are percentage changes relative to the baseline period;
rows are decile-bin averages.
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D Additional Derivations
This appendix section provides additional derivations for the results in Section 2 and 4 as well as a
motivation for the utilization of HHI indices.

D.1 Proof of Proposition 1 and 2 (Section 2)
In this subsection, we provide additional derivations for the results in Section 2. Specifically, we present
the derivations for the approximation results. To begin, it will be helpful to reiterate key results from
Chiong, Galichon and Shum (2016), specifically, their Theorem 1, which relates conditional choice
probabilities and continuation values to the subdifferential of the G function and the convex conjugate
of the G function, i.e.

p ∈ ∂G (w)

and,
w ∈ ∂G ∗(p)

where the former equation is a generalization of the Williams-Daly-Zachery (WDZ) theorem as dis-
cussed in Chiong, Galichon and Shum (2016) and the latter generalizes results in Hotz and Miller
(1993). We then start by approximating the G ∗ function around w0,

G (w) = G (w0) +
∑

y

∂G (w)
∂ w y

�

w y −w0
y

�

+
1
2

∑

y

∑

y ′

∂ 2G (w)
∂ w y∂ w y ′

�

w y −w0
y

��

w y ′ −w0
y ′

�

+ o (·)

dG (w) =
∑

y

∂G (w)
∂ w y

dw y +
1
2

∑

y

∑

y ′

∂ 2G (w)
∂ w y∂ w y ′

dw y dw y ′ + o (·)

and similarly, for the convex conjugate function,

G ∗(p) = G ∗(p0) +
∑

y

∂G ∗(p)
∂ py

�

py − p0
y

�

+
1
2

∑

y

∑

y ′

∂ 2G ∗(p)
∂ py∂ py ′

�

py − p0
y

��

py ′ − p0
y ′

�

+ o (·)

dG ∗(p) =
∑

y

∂G ∗(p)
∂ py

dpy +
1
2

∑

y

∑

y ′

∂ 2G ∗(p)
∂ py∂ py ′

dpy dpy ′ + o (·)

In terms of log changes we have,

d lnG (w) =
∑

y

∂G (w)
∂ w y

w y

G (w)
d ln w y +

1
2

∑

y

∑

y ′

∂ 2G (w)
∂ w y∂ w y′

w y w y ′

G (w)
d ln w y d ln w y ′ + o (·)

d lnG ∗(p) =
∑

y

∂G ∗(p)
∂ py

py

G ∗(p)
d ln py +

1
2

∑

y

∑

y ′

∂ 2G ∗(p)
∂ py∂ py′

py py ′

G ∗(p)
d ln py d ln py ′ + o (·)

Applying Theorem 1 from Chiong, Galichon and Shum (2016), we obtain,
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d lnG (w) =
∑

y

py w y

G (w)
d ln w y +

1
2

∑

y

∑

y ′

∂ py

∂ w y′

w y′

py
py w y

G (w)
d ln w y d ln w y ′ + o (·)

d lnG ∗(p) =
∑

y

w y py

G ∗(p)
d ln py +

1
2

∑

y

∑

y ′

∂ w y

∂ py′

py′

w y
w y py

G ∗(p)
d ln py d ln py ′ + o (·)

Defining the cross-elasticity, ϱp,w
y,y ′ ≡

∂ ln py

∂ ln w y′
=

∂ py

∂ w y′

w y′

py
and ϱw,p

y,y ′ ≡
∂ ln w y

∂ ln py′
=

∂ w y

∂ py′

py′

w y
,

d lnG (w) =
∑

y

py w y

G (w)
d ln w y +

1
2

∑

y

∑

y ′
ϱ

p,w
y,y ′

py w y

G (w)
d ln w y d ln w y ′ + o (·)

d lnG ∗(p) =
∑

y

w y py

G ∗(p)
d ln py +

1
2

∑

y

∑

y ′
ϱ

w,p
y,y ′

w y py

G ∗(p)
d ln py d ln py ′ + o (·)

Rewrite in terms of generic weights,ωy ≡
w y py

G (w) and ω
∗
y ≡

w y py

G ∗(p) ,

d lnG (w) =
∑

y

ωy d ln w y +
1
2

∑

y

∑

y ′
ϱ

p,w
y,y ′ωy d ln w y d ln w y ′ + o (·)

d lnG ∗(p) =
∑

y

ω∗y d ln py +
1
2

∑

y

∑

y ′
ϱ

w,p
y,y ′ω

∗
y d ln py d ln py ′ + o (·)

which is the stated result and gives us a second-order characterization of the (conjugate) social
surplus.1

D.2 Derivations for Section 4
Turning towards an isoelastic labor supply system, i.e.

py =
wγy
∑

y wγy

We can totally differentiate and obtain,

ϵ
w,p
y,y ′ ≡

∂ ln w y

∂ ln py ′
=

�

∂ py

∂ w y ′

w y ′

py

�−1

=
�

−py ′γ
�−1

if y = y ′

ϵ
w,p
y,y ′ ≡

∂ ln w y

∂ ln py ′
=

�

∂ py

∂ w y ′

w y ′

py

�−1

=
�

γ− pyγ
�−1

if y ̸= y ′

Substituting, we obtain,

d lnG ∗(p) =
∑

y

ω∗y d ln py +
1
γ

∑

y

ω∗y

1− py

�

d ln py

�2
−

1
2γ

∑

y

∑

y ′ ̸=y

ω∗y

py ′
d ln py d ln py ′ + o (·)

1Throughout the text, what we call a “second-order approximation of the social surplus” is formally a first-order log-
linearization of a full second-order Taylor expansion in levels of G (or G∗).
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Assuming, y ∈ Y = [Stay,Local,Spatial], we obtain,

d lnG ∗(p; x)
d ln x̄

≈
∑

y=stay,
local, spatial

�

ω∗Y (x)
d ln py(x)

d ln x̄

�

+
1
γ

∑

y=stay,
local, spatial

�

ω∗Y (x)

1− py (x)

�

d ln py(x)

d ln x̄

�2�

−
1

2γ

∑

y=stay,
local, spatial

∑

y ′ ̸=y

�

ω∗y (x)

py ′ (x)

d ln py(x)

d ln x̄
d ln pn(x)

d ln x̄

�

as reported in Section 4.
Note that, while assuming stationarity is convenient because it allows us to interpret our first- and

second-order welfare approximations as steady-state elasticities and to obtain a clean mapping between
continuation values and Conditional Choice Probability (CCP), as discussed in Chiong, Galichon and
Shum (2016), it is not strictly necessary. Indeed, these approximations could also be computed period
by period in a non-stationary setting.

D.3 Proof of Corollary 1 (Section 2)
We now connect our second-order welfare approximation to an index of local labor market diversity.
Consider a city C with local sub-population shares πℓ. Starting from the general expression for welfare
changes,

d lnWC =
∑

ℓ∈C

πℓ d lnGℓ

=
∑

ℓ∈C

πℓ

�

∑

m

wm

Gℓ
pm|ℓ d ln wm +

1
2

∑

m

wm

Gℓ
pm|ℓγℓ
�

d ln wm

�2
−

1
2

∑

m,k

wm

Gℓ
pm|ℓγℓpk|ℓ d ln wm d ln wk

�

,

(8)

where pm|ℓ are conditional choice probabilities and γℓ governs their cross substitution elasticities such
that ∂ ln pk|ℓ

∂ ln wm|ℓ
≡ −γℓ pm|ℓ + γℓ1{m=k}.

Define the log-elasticity weights λm|ℓ ≡
wm
Gℓ

pm|ℓ (which satisfy
∑

mλm|ℓ = 1) and let sm ≡ d ln wm

denote the vector of shocks. Then (8) becomes

d lnWC =
∑

ℓ

πℓ

�

∑

m

λm|ℓsm +
1
2

∑

m

γℓλm|ℓs
2
m −

1
2

∑

m,k

γℓλm|ℓλk|ℓsmsk

�

. (9)

Taking expectations with E[s] = 0 and Cov(s) = Σ eliminates the linear term and yields

E
�

d ln WC
�

=
1
2

∑

ℓ

πℓγℓ

�

∑

m

λm|ℓΣmm −λ⊤ℓ Σλℓ

�

. (10)

Under equicorrelation (Σmm = σ2 and Σmk = νσ2 for m ̸= k) and common elasticities (γℓ = γ ∀ℓ), this
simplifies to

E
�

d ln WC
�

=
1
2
σ2 (1− ν)γ











1−
∑

ℓ

πℓ

∑

m

λ2
m|ℓ

︸ ︷︷ ︸

HHIℓ











, (11)
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linking the expected welfare change to the complement of a concentration index akin to Herfind-
ahl–Hirschman index (HHI).
This formalizes the intuition that the “insurance value” of diversity is proportional to the shock

variance (σ2) and inversely related to market concentration (HHIC ≡
∑

ℓπℓHHIℓ).
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E Computational Details
This section explains how we recover welfare-consistent choice values from observed probabilities via
the mass-transport approach and use them in our empirical welfare accounting.
The first subsection formally summarizes the Chiong, Galichon and Shum (2016) setup–convex

surplus, its conjugate G∗(p), and the optimal-transport formulation whose dual delivers continuation
values and, after a single normalization, welfare weights.
The second subsection details howwe deploy their approach and combine it with estimated dynamic

responses (including sign asymmetry and HHI heterogeneity) to derive first- and second-order welfare
effects.
The final subsection provides a pseudo-code as an overview of our approach.

E.1 Mass-Transport Approach (Chiong, Galichon and Shum, 2016)
Let Y be a finite set of actions and, for state x , let w = (w y)y∈Y denote choice-specific continuation
values and ϵ = (ϵy)y∈Y ∼Q(· | x) idiosyncratic shocks. The social surplus

G(w; x) = E
�

max
y∈Y
{w y + ϵy}
�

�

�

�

x
�

is convex, and (under regularity) maps values to CCPs via the Williams–Daly–Zachary relation p =
∇G(w). Its convex conjugate

G∗(p; x) = sup
w
{p ·w− G(w; x)}

satisfies G(w; x) + G∗(p; x) = p · w with p ∈ ∂ G(w; x) ⇐⇒ w ∈ ∂ G∗(p; x). Hence, given observed
CCPs p, one can invert to rationalizing values w using the subgradient of G∗.

Mass-transport formulation (CGS). Chiong, Galichon and Shum (2016) show G∗(p; x) equals the
value of an optimal-transport problem that couples the multinomial p over Y with the shock distribution
Q, under cost c(y,ϵ) = −ϵy . With a discrete approximationQ ≈ {ϵ(s)}Ss=1 (with weights 1/S per Kennan,
2006), this becomes the linear program

max
πys≥0

∑

y,s

ϵ(s)y πys s.t.
∑

s

πys = py ∀y,
∑

y

πys =
1
S ∀s,

whose objective equals G∗(p; x) (up to sign). The associated dual variables deliver a subgradient w ∈
∂ G∗(p; x), i.e., the continuation values (up to an additive constant). This mass-transport approach
accommodates general (including correlated) shock distributions and provides a numerically convenient
inversion from CCPs to values, which we use as the basis for our welfare objects and weights.

E.2 Implementation Overview
Welfare weights. For each city–year cell, we start from observed conditional choice probabilities over
three margins (stayers, spatial moves, non-spatial switches). We approximate the distribution of choice
shocks with a finite support and solve the assignment linear program whose value equals the convex
conjugate G∗(p) of the social surplus. The program’s dual variables deliver a subgradient of G∗, which
we interpret as choice–specific continuation values, unique up to an additive constant. We impose a
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single normalization so that the dot product of these values with observed probabilities equals G∗(p) in
that cell. The resulting theory–consistent welfare weights are ω∗y = (w y py)/G∗(p) .2

Impulse responses, shocks, and welfare effects. We then combine these weights with dynamic
responses of probabilities that we estimate using local projections with external shifters. The empirical
specification allows (i) separate positive and negative shocks, (ii) dynamic effects over multiple horizons
including the contemporaneous term, and (iii) heterogeneity by market concentration via interactions
with a Herfindahl index. From these estimated impulse responses, we form predicted paths for the
three margins under three counterfactual scenarios of concentration and shock realization: holding
both concentration and shifters at their across–cell averages, holding shifters at their average while
letting concentration vary by cell, and allowing both to vary at observed values.
Per period and cell, first–order welfare is the inner product of weights and predicted probability

changes. Second–order terms expand welfare around the baseline using the multinomial geometry:
own–margin quadratic components enter with w y/(1− py) and cross–margin components enter with
the appropriate negative terms scaled by w y/py ′ . We discount over horizons and sum across time. For
reporting, we aggregate by concentration quantiles, produce scatter and binscatter diagnostics against
log concentration, and compile tables that separate positive and negative contributions and decompose
second–order effects into diagonal and off–diagonal parts.

2We set S=1000 support points for the shock discretization, with a positive covariance across margins (diagonals around
one half, moderate off–diagonals in the covariance matrix as in the baseline code in Chiong, Galichon and Shum, 2016).
The assignment problem is solved with a standard LP solver.
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E.3 Pseudo-code Implementation

Pseudo-code — MTA Inversion and Welfare

1. Inputs (per baseline cell). Choice probabilities p ; discretization size S; discount factor δ;
elasticity γ; impulse-response coefficients with sign asymmetry and HHI interactions; coun-
terfactual path of shocks.

2. Discretize shocks. Draw {ϵ(s)}Ss=1 from a correlated multivariate distribution; set ws = 1/S.

3. Mass-transport program (conjugate side). Solve

max
πys≥0

∑

y,s

ϵ(s)y πys s.t.
∑

s

πys = py ,
∑

y

πys = ws.

4. Recover continuation values and normalize. Construct a subgradient w ∈ ∂ G∗(p) from
the duals and impose the single normalization

∑

y w y py = G∗(p). Form welfare weights
ω∗y = (w y py)/G∗(p).

5. Build probability paths. From the estimated responses, create ∆py(h) over horizons h =
0, . . . , 4 with separate positive/negative components and HHI interactions; generate variants
with averaged vs. observed HHI and shifters.

6. First-order welfare (FOA). For each cell and horizon,

∆W (1)(h) =
∑

y

ω∗y∆py(h)

7. Second-order welfare (SOA). For each cell and horizon,

∆W (2)(h) =
1
γ

∑

y

ω∗y

1− py

�

∆py(h)
�2
−

1
2γ

∑

y

∑

y ̸=y ′

ω∗y

py ′
∆py(h)∆py ′(h),

8. Discounted welfare effects. Sum over horizons h for cell-level totals ∆W (h) =
δh
�

∆W (1)(h) + 1
γ∆W (2)(h)
�

; aggregate overall and by HHI quantiles; report FOA vs. SOA,
positive vs. negative, and diagonal vs. off-diagonal components.
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