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Abstract

We study the role of supply chain disruptions in shaping consumer prices, focusing on both firms’ own
import shocks and strategic responses to competitors’ disruptions. Using a newly constructed micro-
level dataset that links transaction-level U.S. import data from Bills of Lading with high-frequency
consumer prices and sales from a consumer panel, we develop a novel approach to estimate the price
effects of cost shocks and product availability. Motivated by a model of delivery delays, cost shocks,
and firm pricing, we implement a shift-share identification strategy based on delivery shortfalls, port
congestion, and freight and import costs. We find sizable pass-through elasticities: firms raise prices
in response to higher import costs and delivery delays, especially when disruptions persist. We also
identify strategic pricing: firms—including non-importers—increase prices in response to competi-
tors’ supply chain disruptions. Using our estimates and back-of-the-envelope calculations from the
model, we show that strategic interactions significantly amplified the direct effects of supply chain
shocks on consumer prices during the pandemic.
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1 Introduction

Throughout the pandemic, supply chain disruptions and their impact on inflation have been at the fore-
front of policy discussions. International trade and supply chains were disrupted in many different ways,
ranging from backlogs at ports, heightenedmaritime shipping costs, production disruptions at the origin
due to COVID restrictions, as well as increased demand shocks that put strains on limited production
capacity. These various measures of disruptions are summarized by the NY Fed Global Supply Chain
Pressure Index (GSCPI) depicted in blue in Figure 1. At the same time, US inflation has experienced
historically high levels, as illustrated by CPI inflation depicted in Figure 1 in red. While the growing
literature studies the implications of these supply chain disruptions,2 it remains unclear what the firm-
level pass-through of these disruptions to consumer prices is and what role strategic interactions play
for the effect of shocks on consumer price dynamics.
To study these questions, we proceed in the following steps. First, we develop a motivating model of

delivery delays, product availability, and firm pricing to illustrate—in a transparent way—how supply
chain pressures translate into higher prices and to provide the estimating framework. Second, we
assemble a large-scale micro-level dataset combining product-level prices with firm-level measures of
delivery shortfalls, port congestions, and marginal cost shocks from unit import costs and freight costs.
Using these data, we then estimate how firms’ own supply chain disruptions—delivery shortfalls, unit
import cost shocks, and freight cost shocks—affect pricing using OLS and a shift-share instrumental
variable approach. Next, we extend the framework to incorporate strategic interactions and estimate
the effect of competitors’ disruptions on firm pricing, over and above the firm’s own shocks. Finally, we
use the estimated objects in a simple accounting exercise to show how supply chain disruptions could
shape aggregate price dynamics through direct cost effects, own availability effects, rivals’ availability
effects, and the amplification generated by strategic feedback.
We begin by building a simple model that delivers an optimal inventory–pricing benchmark that

links replenishment lead times and base-stock targets to product availability and markups. Product
availability—the probability that an arriving customer is served—falls with longer lead times or lower
base-stock and rises with faster replenishment. We show that lower availability reduces the effective
price elasticity faced by the firm, which raises the optimal markup, while higher availability increases
the effective elasticity and compresses markups. Consequently, supply chain shocks through longer
delays and lower availability naturally result in higher prices.
We use our simple model to deliver reduced-form expressions for optimal price dynamics that split
2See, among others, Ascari, Bonam and Smadu (2024); Bai et al. (2024); Finck, Klein and Tillmann (2024); Brancaccio,

Kalouptsidi and Papageorgiou (2025).
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observed price changes into (i) movements in marginal cost and (ii) movements in product availability,
both filtered through the same pass-through parameter implied by the pricing rule. We map import
delivery shortfalls to changes in availability and decompose marginal cost shocks into unit import and
freight cost components. The simple model also disciplines the signs: higher availability raises the
effective price elasticity and compresses markups, while increases in cost push prices up with a pass-
through strictly between zero and one.

Figure 1. Supply Chain Pressure Index and Inflation
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Notes: (A) Global Supply Chain Pressure Index (GSCPI, NY Fed). (B) CPI for All Urban Con-
sumers: all items less food and energy, year-to-year change, from BLS. (FRED, CPILFESL)

To trace how upstream supply chain disruptions affect downstream consumer prices, we build a
matched firm–product panel that combines two unusually granular sources: shipment-level import
records, which reveal a firm’s supply pipeline at high frequency, and receipt-level consumer transac-
tions, which record the prices actually paid by consumers for specific products over time.
On the upstream side, we use S&P Global Panjiva Bills of Lading (2007–2023), a transaction-level

dataset of U.S. maritime imports reporting shipper–consignee pairs, HS descriptions, quantities/weights,
and vessel arrival dates.3 Event-level time stamps and counterparty identifiers allow us to construct
firm×product-code (HS) measures of delivery shortfalls, defined as deviations in k-month cumulative
import volumes relative to the 2019 pre-pandemic benchmark, which we then aggregate to the firm
level. We complement our measures of delivery shortfalls with firm exposure to port congestion (dwell
times) by combining data on a firm’s port usage with U.S. port dwell time data from Fuchs and Wong

3Panjiva is based on the near-universe of waterborne bills of lading filed with U.S. Customs and Border Protection, pro-
viding named shipper–consignee identifiers and event-time stamps for individual shipments.
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(2022).4 Finally, we assemble two model-motivated marginal-cost shifters: unit import costs and freight
costs. Changes in import costs (unit values at the firm×HS-code level) and freight costs (at the port level)
are aggregated using firm exposures to HS codes and ports to derive firm-specific shocks.
Tomeasure downstream consumer prices, we use Numerator’s Consumer Panel (2019–2023), which

records itemized receipts from both brick-and-mortar retailers and online. The data span a wide
range of goods in the consumer basket, covering many product categories with detailed information
on quantities, sales, producer names, brands, and purchase timestamps. We define products at the
firm–brand–category level and track 12-month price changes as our baseline outcome. The receipt-
level detail ensures we capture realized transaction prices, including promotions and coupons, across
households, channels, and geographies. Aggregate spending in the panel closely follows Census retail
sales, and the resulting inflation series comoves tightly with the CPI, underscoring the reliability of the
data for analyzing consumer price dynamics.
We link consumer purchases from Numerator to international shipments in Panjiva data, creating

a novel product-firm-level dataset that connects U.S. consumer prices to import activity. The matched
sample covers more than 40% of all product-month observations in Numerator and about half of the
total sales. Two descriptive patterns stand out: delivery shortfalls during 2020–2022 were large but
highly uneven—both across categories and across firms within a category—and price changes display
similarly wide dispersion, with the largest firms raising prices more on average and more diversified
importers showing attenuated price growth.
Using these data, we estimate how supply-chain disruptions–delivery shortfalls, import unit cost

shocks, and freight cost shocks–affect firm pricing. We regress 12-month product-level price changes
on measures of firm-level shortfalls and marginal-cost shocks, controlling for firm and product cate-
gory–time fixed effects that filter out the aggregate demand factors. Still, firm-level delivery shortfalls
may be correlated with unobserved idiosyncratic demand shocks, biasing OLS estimates downward. To
isolate the causal effect of availability disruptions, we implement a shift–share IV strategy that instru-
ments delivery shortfalls with measures of delivery shortfall exposure and dwell-time change exposure
based on firms’ pre-pandemic import portfolios. This design provides plausibly exogenous variation in
supply conditions for firms within narrowly defined product markets facing the same aggregate demand
shocks and yields, delivering a direct empirical counterpart to the theoretical pass-through equation.
We find that both own delivery shortfalls and marginal-cost shocks translate into sizable, but in-

complete, changes in consumer prices. OLS estimates understate the effect of shortfalls, but instru-
4Similar data have also recently been used by Brancaccio, Kalouptsidi and Papageorgiou (2024, 2025); Bai et al. (2024)

to study supply chain disruptions, but to the best of our knowledge this is the first study that explicitly constructs and exploits
heterogeneous incidence at the firm-level.
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menting with exposure measures produces stable elasticities above 0.21. Delivery shocks (at 3-month
moving averages) pass through contemporaneously, whereas import and freight cost shocks transmit
with a short lag. Pass-through intensifies when disruptions persist, indicating that firms adjust prices
more when they perceive shocks as durable. Heterogeneity analyses reveal that while durable goods
experienced stronger price growth during the pandemic, this largely reflected demand pressures rather
than a higher elasticity of supply-side pass-through. Overall, the results highlight that both availability
constraints and cost shocks contributed meaningfully to consumer price inflation, with the IV strategy
ensuring the estimates reflect supply-driven rather than demand-driven effects.
We next examine strategic interactions to assess whether firms’ price responses to supply chain

shocks were amplified by their rivals’ disruptions. Extending the simple model to allow for strategic
interactions (Amiti, Itskhoki and Konings, 2019) highlights how each firm sets prices not only based on
its own costs and availability but also on competitors’ conditions. Empirically, we augment our pass-
through specification to include rivals’ market-share–weighted delivery shortfalls and cost shocks (unit
and freight), defining rivals within finely delineated product categories.
The results show that, beyond the direct effect of own disruptions, supply shocks also transmit to

prices through strategic channels. Firms adjust prices upward in response to their competitors’ disrup-
tions, with the elasticity of rivals’ shortfalls to own prices about half the size of the own-pass-through
elasticity. Competitors’ cost shocks likewise spill over, indicating that supply bottlenecks and cost pres-
sures propagate through competitive interactions. Importantly, these effects extend to non-importers,
who raise prices when importing rivals are hit, consistent with demand shifting toward unaffected
sellers and reduced competitive discipline. Finally, both own and competitor pass-through are state-
dependent: price responses are significantly larger in high-inflation sectors and during periods of el-
evated aggregate inflation. Together, these findings imply that supply chain disruptions can generate
aggregate price pressures well beyond the directly affected firms, with amplification that is strongest
precisely when inflation is already high.
Finally, we conduct a model-consistent accounting exercise (in an impulse–response spirit) that

feeds aggregate shock series—delivery shortfalls, port congestion, and imported-input costs—into the
estimated micro structure to trace their impact on prices. The decomposition shows that availability
shocks, particularly those amplified by port dwell times and strategic complementarities, dominate the
aggregate price surge dynamics. Strategic interactions magnify both own and rivals’ disruptions, trans-
mitting cost and availability shocks even to non-importers, with the strength of amplification shaped by
market composition.
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Literature. Our paper contributes to several areas of the literature. First, we speak to the pass-through
literature for internationally sourcing firms by placing availability via delivery shortfalls—a reduced-
form proxy for delivery delays and inventory constraints—on the same pricing margin as marginal costs.
Cost-focused work shows that tariff cuts reduce marginal costs yet raise markups, implying incomplete
pass-through (De Loecker et al., 2016); related evidence on energy shocks documents full pass-through
for cost increases but only partial pass-through for cost reductions, with limited aggregate inflation
effects given energy’s small cost share and substantial within-industry heterogeneity (Lafrogne-Joussier,
Martin and Mejean, 2023). On the strategic side, Amiti, Itskhoki and Konings (2019) document strong
strategic complementarities in price setting, and Albagli et al. (2025) show these complementarities
can dominate cost forces and are state-dependent. We fold these insights into a unified specification
that treats own costs, competitors’ prices, and—critically—own and rivals’ availability in parallel, thus
isolating a distinct mechanism whereby supply-chain disruptions via delivery delays shift prices even
conditional on costs. Our contribution is novel evidence on the significance of supply chain disruptions
both for the direct - own - pass-through as well as strategic interactions between firms.
We also contribute to the literature that links inventories, delivery frictions, and pricing. Dynamic

inventory models with monopolistic competition show that scarce stocks raise markups and slow pass-
through, with delivery lags and fixed order costs generating state-dependent pricing and precaution-
ary inventory behavior (Alessandria, Kaboski and Midrigan, 2010; Alessandria et al., 2023). Work
on sourcing under stochastic delivery times emphasizes that binding inventory constraints tilt pricing
toward precautionary markups and induce higher buffers when supply is slower or riskier (Carreras-
Valle and Ferrari, 2025). Macro and retail studies with inventories and nominal frictions likewise pro-
duce real rigidities, inventory-driven sales, and state-dependent markups (Khan and Thomas, 2007;
Kryvtsov and Midrigan, 2013; Aguirregabiria, 1999). Relative to these contributions, our approach
is deliberately minimal and analytically transparent: it delivers closed-form objects that pin down an
availability-adjusted markup and a sharp, estimable decomposition of price changes into cost and avail-
ability channels. This tractability directly motivates reduced-form empirical specifications for both own
pass-through and strategic exposure to rivals’ conditions, and it provides a clean bridge to frameworks
that measure strategic complementarities in price setting—most notably extending Amiti, Itskhoki and
Konings (2019) by bringing firm and rival availability into the same empirical mapping as costs and
competitor prices.
Finally, we contribute to a string of recent research that links pandemic-era bottlenecks to inflation

and macro dynamics. Survey evidence shows disruptions shifting expected unit costs (Meyer, Prescott
and Sheng, 2023); New Keynesian analyses with binding capacity constraints trace upward shifts in
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Phillips curves and amplified goods-sector inflation (Comin, Johnson and Jones, 2023); indices based
on container-ship movements and DSGE exercises attribute a sizable 2021 inflation impulse to supply-
chain shocks and study monetary-policy interactions (Bai et al., 2024; Amiti et al., 2024); and high-
frequency micro evidence documents how pandemic-induced stockouts transmitted into temporary but
significant inflationary pressures (Cavallo and Kryvtsov, 2023). Related work emphasizes the central
role of transportation rigidities—ships and ports—in propagating shocks to trade costs and inflation
(Brancaccio, Kalouptsidi and Papageorgiou, 2025). At the micro level, Liu, Smirnyagin and Tsyvinski
(2024) show that delivery lapses depress supplier balance sheets and firm performance without trac-
ing consumer-price pass-through, while Borusyak and Jaravel (2021) study tariff pass-through but not
pandemic-related delays. Our contribution is to provide causal evidence—using uniquemicro–level data
that link firm–specific delivery shortfalls to item–level prices—on how supply–chain disruptions move
prices and how strategic complementarities across firms amplify these effects. We isolate delay–specific
shocks from input–cost movements and pair the evidence with a tractable model–to–data mapping that
delivers closed–form pass–through objects and a transparent decomposition of price changes into cost
and availability channels, quantifying both own pass–through and strategic exposure to rivals’ condi-
tions.
The remainder of the paper is structured as follows. Section 2 introduces a motivating model. Sec-

tion 3 describes the data construction and provides summary statistics. Section 4 analyzes the pass-
through of both own and competitors’ supply chain disruptions to consumer prices. Section 5 presents
a simple accounting exercise to quantify potential aggregate implications of supply chain disruption
shocks. Section 6 concludes.

2 Theory

In this section, we lay out a simple, transparent model that connects supply-chain conditions to firms’
pricing and inventory choices. The model provides economic intuition and motivates our empirical
design. A downstream firm facing flow demand and stochastic replenishment chooses a posted price
and a base-stock target. Under a base-stock policy, we obtain closed-form expressions for the stock-
in probability and a generalized Lerner rule in which an availability wedge (driven by congestion in
replenishment) raises markups when stock is scarce. Linearizing the pricing condition delivers a two-
term decomposition of price changes into a marginal-cost component and an availability component—a
structure we take directly to the data. The derivations and notation are collected in Appendix A.1; in
Section 4.2 we extend the model to allow for strategic interactions between firms.
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2.1 A simple model of pricing, availability, and lead times

We study a single downstream firm that procures a ready-made product from an upstream supplier
rather than producing it in-house.5 The firm chooses a posted (log) price p and a base–stock target τ,
our availability shifter that summarizes order size, review frequency, expediting, and sourcing intensity.
Operationally, a base–stock (order-up-to) rule aims to restore on-hand inventory to τ whenever a de-
livery arrives; higher τ raises the chance that an arriving customer is served but increases holding cost,
so τ is the reduced-form buffer-capacity lever given the upstream replenishment process.6

Customer demand arrives as a flow at rate λ(p), decreasing in price. Replenishment of the firm’s
inventory occurs through the supplier with stochastic delivery times summarized by a replenishment

speed µ > 0: higher µ means faster deliveries (mean lead time 1/µ). Only demand arrivals that find
stock on hand are served. Let p and c denote log price and log marginal cost, with corresponding levels
P := ep and MC := ec, and let h > 0 be the holding–cost rate per unit of average on-hand inventory
E[I(τ,λ(p),µ)]. Finally, we are making the assumption that customers who arrive when no stock is
hand are not being served, an assumption commonly called the lost-sales setting. Focusing on steady-
state flow payoffs in a lost-sales setting, the firm’s static profit rate is7

Π(p,τ) =
�

P −MC
�

λ(p) s
�

τ,λ(p),µ
�

− hE
�

I
�

τ,λ(p),µ
��

,

where s(τ,λ,µ) ∈ [0, 1] is the acceptance (stock-in) fraction—the probability that a demand arrival is
served.
To obtain closed-form objects that map cleanly to the data, we adopt two standard assumptions. (i)

Flow demand is log-linear, λ(p) = Λ e−σp, so σ > 0 is the demand semi-elasticity, and Λ > 0 collects
demand shifters. (ii) Replenishment lead times are exponential with rate µ > 0 (mean 1/µ), and the

5Although we maintain this interpretation, the model can readily be adapted to view firms as receiving intermediate
goods deliveries—an interpretation that maps naturally to our import data discussed later.

6We deliberately abstract from several operational features to keep the mapping transparent: a single product under
continuous reviewwith lost sales (rather than backlogging), no fixed order or setup costs orminimum order quantities (which
would induce (s, S) policies), and no storage limits, perishability, or order crossover. We also treat the replenishment speed
µ as within-period exogenous. As we will show below, these simplifications deliver the closed-form acceptance probability
s(τ,λ,µ) and a clean link between pricing and inventory that we can take to the data. Formal details and variants are
provided in Appendix A.1.

7Lemma 1 in Appendix A.1 shows that the profit rate is an equivalent objective to long-run average profit under the
memoryless property of the exponential distribution, (A23)–(A25).
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firm follows a base–stock rule at level τ ∈ N.8 Define

r ≡
λ

λ+µ
∈ (0, 1), s(τ,λ,µ) = 1− r τ,

so r measures how fast demand arrives relative to replenishment (“congestion”), and one can show
that under the assumptions above s is the probability an arriving customer finds stock on hand - our
closed-form stock-in probability.9 It is also convenient to track how demand pressure erodes availability
via

κ(τ,λ,µ) ≡ λ
∂ s
∂ λ

= −τ(1− r) rτ < 0,

an availability adjustment that will enter the pricing condition. Intuitively, r summarizes congestion, s
summarizes how often customers are served, and κ summarizes how sensitive that service probability
is to demand pressure—three workhorse objects that link lead times and inventory choices to prices
and that carry through to the empirical mapping below.
Under these stochastic assumption, we have derived a mildly adjusted standard firm optimization

problem. The firm chooses a profit maximizing price, but in our setting also chooses a base-stock to
maintain product availability and internalizes the effect pricing has on availability. Given this setup,
we are now in a position to characterize the firm’s optimal joint pricing and inventory choice. The
following proposition summarizes the firm’s optimal choice under the additional assumption that pricing
is constant within a replenishment cycle.10

Proposition 1 (Optimal pricing and inventory in the simple model). For any τ, the profit-maximizing
8A realistic microfoundation for exponential lead times comes from the assumptions that upstream suppliers fill orders

subject to capacity constraints, with orders that are waiting to be served forming a queue. Formally, we can be generic about
both the arrival and servicing process of that upstream queue as long as we accept an asymptotic characterization of the
queue under heavy traffic. In queuing notation, we consider a upstream G/G/1 (single-server queue with interarrival and
servicing times having an arbitrary distribution) queue in heavy traffic: the stationary lead time is approximately Exp(µHT)
with µHT proportional to system slack and dampened by variability; see Appendix A.1, Lemma 2.

9Appendix A.1 first derives the stock-in probability from the exponential arrival processes for customers and upstream
suppliers and then furthermore shows that the arrival probability for any individual customers, s, equals the time-average
availability use in the objective function, the profit rate (Lemma 1).
10We assume prices are fixed within a replenishment cycle. This is consistent with micro evidence on infrequent price

adjustment and with standard pricing frictions. For U.S. consumer prices, Nakamura and Steinsson (2008) show that once
sales are netted out, the median frequency of nonsale price changes is on the order of 9–12% per month (implying median
durations of roughly 8–11 months), whereas including sales yields much shorter durations. For the euro area, Alvarez et al.
(2006) document average monthly frequencies near 15% (implying typical durations close to a year), again indicating that
many prices remain unchanged for several months at a time. These facts make it empirically plausible that a firm does not
reprice within a single replenishment cycle. The assumption also buys tractability: it delivers closed–form characterizations
for availability, markups, and pass–through that map cleanly to reduced–form specifications.
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price satisfies the generalized Lerner condition in levels:

P∗ −MC
P∗

=
1

σ
�

1+
κ

s

�

�

equivalently p∗ = c − ln
�

1− 1
σ(1+κ/s)

�

�

,

with s = 1− rτ, κ = −τ(1− r)rτ, λ = Λe−σp∗ , and r = λ/(λ+µ). If τ is chosen discretely, an interior

base–stock τ∗ solves the exact marginal condition

�

P∗ −MC
�

λ rτ
∗
(1− r) = h
�

1− rτ
∗+1
�

,

with λ= Λe−σp∗ . Under the continuous relaxation of τ, this first-order condition admits a unique solution

with rτ
∗ ∈ (0, 1).

These results have a simple interpretation. The pricing rule is a generalized Lerner condition in
which the usual elasticity σ is adjusted by the availability term 1 + κ/s. Because κ/s < 0 when-
ever stockouts can occur, the effective elasticity σ(1 + κ/s) is below σ, implying a markup fraction
(P∗ −MC)/P∗ above the frictionless benchmark 1/σ. The inventory condition trades off the marginal
contribution from an additional unit of buffer against its holding cost: an extra unit pays off exactly
when, before the next delivery, the next τ superposed events are τ−1 demand arrivals followed by a
delivery, an event with probability rτ(1− r), yielding marginal revenue (P∗−MC)λ rτ(1− r) that is set
equal to h(1− rτ+1). As replenishment becomes faster, that event becomes less likely, the shadow value
of inventory falls, and the optimal base–stock τ∗ declines. Taken together, higher µ improves availabil-
ity through two channels: it directly raises the acceptance probability s and, by pushing κ/s toward
zero, increases the effective elasticity and compresses the markup; both effects reduce the incentive to
hold inventory. Panels 2a–2b provide a compact visualization of the two optimality margins in Propo-
sition 1. Panel 2a plots the inventory condition: the optimal base–stock is where the marginal revenue
from an extra buffer unit intersects the marginal holding–cost schedule; when delivery slows (lower µ),
the marginal-revenue curve shifts up and the optimal τ rises. Panel 2b depicts the pricing condition
in accepted units: the availability wedge shifts marginal revenue below the frictionless benchmark, so
tighter availability (lower s) raises the markup and reduces the accepted flow; as availability improves,
the outcome moves toward the frictionless point.

Corollary 1 (Comparative statics with respect to lead times µ). Holding primitives (Λ,σ, c, h) fixed,

∂lnµ ln s =
τ rτ(1− r)

1− rτ
> 0, ∂lnµp∗(µ)< 0, ∂lnµτ

∗(µ)< 0.
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Figure 2. Inventory management with delivery delays
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Notes. Panel (a) — Inventory choice. On the horizontal axis: base–stock (availability shifter) τ. On the vertical axis: marginal
value/cost per unit time. MC inv(τ) is the marginal holding–cost schedule. MRinv(τ,µ) is the marginal revenue from one
more unit of buffer. When replenishment slows (µ2 < µ1), MRinv(τ,µ) shifts up—each unit of buffer is more valuable—so
the optimal base–stock rises: τ∗(µ2) > τ∗(µ1) where MRinv = MC inv. The shaded area illustrates inventory surplus at the
higher µ; it expands when delivery slows. Panel (b) — Price choice in accepted units. On the vertical axis: price p. On the
horizontal axis: accepted flow qA. Inverse demand is p = D(qA). The availability–adjusted marginal–revenue curve MRs(qA)
lies below the frictionless benchmark MR0(qA) (the case s ≡ 1). Price is set where MRs meets marginal cost MC(qA). Tighter
availability (lower s) shifts MRs down, yielding higher prices and lower accepted quantities (qA,τ, pτ); as s improves, the
outcome moves toward the frictionless point (qA,pc , ppc). The ordering ppc < pm < pτ visualizes the generalized–Lerner
logic: weaker availability lowers effective elasticity and raises the markup.

In the fast–replenishment limit µ→∞, we have r → 0 and s→ 1; by the Lerner rule the markup fraction

approaches 1/σ, so the optimal level price tends to MC · σ/(σ − 1) and the optimal log price tends to

c + ln
�

σ/(σ − 1)
�

. Conversely, in the slow–replenishment limit µ→ 0, we have 1− r ≈ µ/(λ+ µ) and

hence s ≈ τµ/(λ+µ); in this region the price response becomes locally flat in µ with ∂lnµp∗→ 0.

Corollary 1 says, in plain terms, that faster replenishment makes more arrivals get served, scarcity
fades, and the firm faces a “softer” constraint—so markups and prices fall. At the same time, an extra
unit of buffer is less valuable (stockouts are less likely before the next delivery), so the optimal base–stock
declines. These forces bite most in the middle of the state space—when the system is neither almost
always stocked nor almost always empty—because small improvements in delivery speed then move
both availability and prices the most. At the extremes, effects are muted: with near-instant delivery the
frictionless markup prevails; with very slow delivery availability is so low that further slowdowns barely
move pricing. To see an illustration of the comparative statics see Figure 2: in panel (a), faster delivery
flattens the marginal-revenue curve and lowers the optimal buffer.
To recap: Our simple model delivers two workhorse objects in closed form—a stock-in (availability)

probability and an availability-adjusted markup rule—and uses them to generate intuitive comparative
statics: faster replenishment raises availability, compresses markups, and lowers the value of holding
inventory, while slower or riskier replenishment does the opposite. These closed-form objects also yield
a ready-to-estimate linear decomposition of price changes into cost and availability components, which
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underpins our empirical design. Relative to existing work on joint pricing and inventory, which typically
solves dynamic models numerically, our approach keeps the same core mechanism but in a tractable,
closed-form environment. For example, Alessandria, Kaboski and Midrigan (2010) study a dynamic
importer with (S, s) ordering and delivery lags that link markups to the shadow value of inventories,
while Alessandria et al. (2023) show in a heterogeneous-firm GE setting that uncertain shipping de-
lays are contractionary and raise prices via stockouts; our scarcity wedge captures the same channel in
reduced form. Likewise, Carreras-Valle and Ferrari (2025) obtain precautionary markups under stochas-
tic delivery times, mirroring our availability channel.11 Our contribution is to isolate these forces in a
mildly extended standard firm optimization problem, delivering analytic expressions that map directly
to reduced-form pass-through—both own and strategic—without solving a dynamic program. We next
turn towards what the model implies for our empirical design.

2.2 From Theory to Empirics

By Proposition 1, the optimal price is pinned down by two ingredients: marginal cost and an availability-
adjusted scarcity term (the κ/s wedge) that compresses the effective demand elasticity when stockouts
are likely. Linearizing around an operating point yields12

dp = 1
1+Γ
︸︷︷︸

:= α∈(0,1)

dmc + Λ
1+Γ
︸︷︷︸

:= βs<0

d ln s + ϵ, (E2)

where α is own pass-through and βs the availability channel. The intuition is simple: any price
change feeds back into scarcity—raising p reduces arrivals, improves availability, and softens the de-
sired markup—so both cost and availability shocks are damped by the same factor 1/(1 + Γ ). When
this scarcity feedback is weak (Γ ≈0), pass-through is close to one; when it is strong, pass-through is
muted. Because βs = αΛwith Λ< 0, better availability raises effective elasticity and lowers the desired
markup, and the resulting price change is scaled by the same α. In short, costs shift the cost side and
11Furthermore, classic inventory macro models (Khan and Thomas, 2007; Kryvtsov and Midrigan, 2013) imply simi-

lar comparative statics—faster replenishment compresses markups and weakens buffer motives—which we quantify in a
tractable flow-demand, exponential-lead-time environment. See Appendix A.3 for an explicit comparison with Kryvtsov and
Midrigan (2013).
12Where we define the markup mappingM (p, ln s) := σ(1+ z(p, ln s))[σ(1+ z(p, ln s))]−1 so that Γ := −∂M/∂ p > 0

and Λ := ∂M/∂ ln s < 0. Start from the Lerner rule in Proposition 1 and write the price–cost gap as a markup mapping

M (p, ln s) := − ln
�

1− 1
σ [1+z(p,ln s)]

�

, z := κ/s.

Then the optimality condition is F(p, c, ln s) := p − c −M (p, ln s) = 0. Totally differentiating around an operating point
gives (1+ Γ ) dp = dc +Λ d ln s, where Γ := −∂pM (p, ln s) ≥ 0 and Λ := ∂ln sM (p, ln s) ≤ 0. Rearranging yields the linear
approximation dp = α dc + βs d ln s with α = 1/(1+ Γ ) and βs = Λ/(1+ Γ ). Replacing dc by dmc (the log marginal–cost
change) gives (E2). Detailed derivations in Appendix A.1.
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availability shifts the markup side, but a single attenuation parameter α governs how quickly prices
move.

From theory tomeasurement. To take themodel to the data, we use two observables: (i) unit–import
and freight price indices that move marginal cost, and (ii) a delivery shortfall index Si t that proxies for
availability. Intuitively, shortfalls in imports slow replenishment, draw down inventories I , and reduce
the stock–in probability s, which raises prices through the availability term in Proposition 1. Locally, we
summarize this link by

∆ ln si t ≈ −φi Si t , φi :=
∂ ln s
∂ ln I
︸ ︷︷ ︸

ηsI>0

×
∂ ln I
∂ ln M
︸ ︷︷ ︸

ηI M (import dependence)

,

so the impact of a given shortfall is larger when availability is more sensitive to inventories and when
inventories depend more on inbound flows. On the cost side, we decompose marginal–cost changes as
∆mci t ≈ θMi∆ ln PM ,t +θF i∆ ln Ft , where θMi and θF i are product–level output elasticities. Combining
these ingredients with the linear pricing response dp = α dmc+βs d ln s yields the estimating equation

∆pi t = α
�

θMi∆ ln PM ,t + θF i∆ ln Ft

�

+
�

−βsφi

�

Si t + FE+ ϵi t , (E3)

so the coefficients on the cost series recover αθMi and αθF i, while the shortfall coefficient
�

−βsφi

�

is larger exactly where import flows are a more important source of inventory. (The precise construction
of Si t is deferred to the data section.)

3 Data and Measurement

We construct a large-scale, micro-level dataset that links consumer prices to firms’ import activity in
order to measure how delivery shortfalls and cost shocks pass through to prices. This linkage is achieved
by combining two rich datasets: a unique consumer panel from Numerator,13 which provides detailed
product-level price and sales data, and shipment-level Bills of Lading (BoL) data from Panjiva, which
cover nearly the universe of U.S. imports and contain detailed economic and logistical information on
each shipment. In what follows, we describe each dataset in detail and outline our construction of
measures for price changes, delivery shortfalls, and marginal cost shocks.
13We thank Leo Feler and the data team at Numerator for providing us with data access and invaluable support.
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3.1 Numerator Data and Price Measurement

We use consumer panel data from Numerator for the period 2019-2023 to infer prices and sales of
various products by firms.14 Numerator is a marketing research company that collects data on consumer
purchases in brick-and-mortar stores and online. Users of the Numerator app participate by either taking
pictures of their receipts or passively sharing their digital purchases by allowing the app to track their
online activity. The closest counterpart to these data is the widely used Nielsen Homescan (HMS)
data from the Kilts Center.15 For our purposes, Numerator’s advantages over HMS include its coverage
of the recent pandemic period and its inclusion of e-commerce, whose share of total retail sales has
substantially increased since the pandemic.16 Appendix Section B.1 provides more details about the
data.
The Numerator dataset contains over one billion receipts from approximately 2.5 million users, in-

cluding a static panel of 400,000 panelists who report purchases for at least 12 consecutive months
and are representative of the U.S. population along key Census demographics. For each static pan-
elist, the data include demographic weights (demo_weight) for alignment with gender, age, ethnicity,
household income, household size, presence of children, and census division, and projection factors
(national_factor and trend_factor) to scale from sample households to the U.S. population. We use the
combined weights and factors in all analyses of quantities and sales.
Each shopping receipt recorded in the Numerator data provides detailed information about the pur-

chased basket, including item descriptions, quantities purchased, prices, and details about the stores
(such as name and address) where the purchases occurred. Important for our analysis is the informa-
tion on the purchased items. Where available, Numerator item IDs are linked with UPC/GTIN codes,
brands, and producer names.17 Items are classified into different categories with varying levels of ag-
gregation. We exclude purchases that lack classification or are categorized as restaurants, non-items,
or intermediate categories, focusing on item IDs with non-missing brand or manufacturer information.
The comparisons of Numerator data with other official statistics suggest that the data provide com-

prehensive coverage of product sales and consumer behavior in the U.S. First, the demographics of static
panelists are similar to those reported in the 2019 Census. Appendix Figure A.2 compares demographics
of the static panelists with the US Census and shows how the sample is very close to the representative
14Analysis is based on the April 19, 2024, Numerator Data Delivery.
15The Numerator data have only recently begun to be used in academic research, having been described and benchmarked

against similar datasets in prior studies (He and Su, 2023; Hacıoğlu Hoke, Feler and Chylak, 2024; Hristakeva, Liaukonyte
and Feler, 2024) and more recently applied in Baslandze et al. (2025).
16Approximately 90% of the transactions are from offline purchases, while the remaining transactions come from digital

sites such as Amazon.com.
17Many products or services are not associated with UPC codes, such as restaurant or entertainment purchases.
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US household in terms of age, region, education, employment, ethnicity, gender, number of children,
marital status, and income (even without applying demographic weights). Second, changes in total
sales across different purchase categories (such as apparel, electronics, health and beauty, and food)
closely track the sales changes observed in U.S. Census Monthly Retail Sales data (Numerator, 2023).
Most importantly for our analysis, monthly price changes in Numerator closely align with monthly price
changes reported by the BLS for various purchase categories, as shown below.
For our baseline analysis, we aggregate 54 million item IDs reported in Numerator and define a

product as the unique combination of the firm, brand, and product category. For example, a product
might be a Hasbro (firm) producing a Peppa Pig (brand) 3-D puzzle (product category). This approach
yields 645,890 distinct products and 77,395 brands sold by 9,458 firms across 4,000 different product
categories.18

For each item and month, we compute the average price as weighted total sales divided by weighted
total quantity, using all transactions from static panelists. Product-level price Pricep,t– with p being a
product and t being a month– is then obtained as a quantity-weighted average of item-level prices.
We construct the product-level price change as a 12-month smoothed price change for product p in

month t, defined as:
∆12 Pricep,t =

Pricep,t − Pricep,t−12

(Pricep,t + Pricep,t−12)/2
.

This measure, inspired by Davis, Haltiwanger and Schuh (1998), reduces the influence of outliers and
captures relative price changes over a one-year horizon, allowing for robust analysis of pricing dynam-
ics.19 To further reduce outliers and account for data noise, we trim the top and bottom 1% of 3, 6, and
12-month price changes (including missings) and drop all products with fewer than five observations
over time and having fewer than five receipts collected in a month.
Numerator data offer a reliable measure of overall consumer price inflation, capturing the broader

inflationary pressures that emerged across the economy during the pandemic. This is evident from the
close alignment between price changes in the Numerator and official CPI data, both of which peak in
mid-2022. Figure 3 illustrates this pattern by comparing 12-month inflation measures from Numerator
with 12-month Urban CPI and Urban Commodity CPI from official statistics.
Finally, the availability of micro-level product price data reveals substantial heterogeneity in price

changes over time– both across categories and, within categories, across firms– especially during the
pandemic (Appendix Figure A.3). The dispersion is large enough that regressions of price growth or
18Other examples of products include Hewlett Packard/Hewlett Packard/Calculators, Revlon Consumer Products/Revlon/Flat

Irons, American Italian Pasta Company/Mueller’s/Lasagna, and Loreal/Cerave/Bar Soaps.
19We verify the robustness of our results by comparing this smoothedmeasure with an alternative definition in log changes,

confirming that our findings are consistent across different specifications.
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Figure 3. Numerator Price Change vs CPI
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Notes: The solid red line illustrates the 12-month aggregate price changes derived from Numerator data. We compute mean product-level price changes within each

category and then aggregate these category-level changes using product category sales weights. The dashed green and blue lines represent the Urban CPI for all items

(FRED series: CPIAUCSL) and the Urban CPI for commodities (FRED series: CUSR0000SAC), respectively.

shortfalls on product category and time fixed effects yield R2 values below 10%, providing substantial
variation for our estimation.

3.2 Panjiva Bill of Lading Data (BoL) and Delivery Shortfalls

The analysis relies on bill of lading (BoL) data to infer import quantities and delivery shortfalls. A BoL
is a legal document between the shipper and carrier required for the shipment of goods, detailing the
commodity, shipping and receiving entities, vessel identifier, port of entry, payment terms, and other
logistics details. These data are derived from images of contracts processed from U.S. ports and customs,
providing a unique, high-frequency view of trade relationships at the transaction and firm level. BoL
data are particularly valuable for capturing detailed maritime trade and logistics information in a timely
manner, making them well-suited for analyzing international delivery delays.20

We use BoL data from S&P Panjiva, which provide comprehensive records of U.S. maritime imports
since 2007, covering over a billion shipments from 17 countries (see Flaaen et al. (2023) for a detailed
description, comparisons with Census data, and discussion of limitations).21 Because BoL does not
report reliable import values, we use public Census data from U.S. Trade Online to convert BoL import
volumes (in TEU) into values. This is done by computing HS2-specific 2019 volume-to-value ratios and
20In 2020, maritime transport accounted for 43% of U.S. imports by value and 60% by weight (Bureau of Transportation

Statistics).
21Since these are maritime shipments, coverage from Mexico and Canada is very limited.
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applying them to BoL shipment volumes at the firm–HS2–month level. Appendix Section B.2 provides
more details about the BoL data, cleaning procedure, and construction.
Our final dataset covers U.S. imports from 2019–2023, aggregated to a firm–HS2–month panel that

includes shipment volumes and values, baseline (2019) benchmarks, and moving-cumulative measures
of import volumes. These data allow us to measure deviations from typical shipment volumes to detect
delivery delays, which we describe below. In addition, we combine these data with port congestion and
shipping delay indicators derived from Automatic Identification System (AIS) data. These complemen-
tary sources, which capture vessel trajectories and port dwell times, help distinguish between delays
arising from port congestion and those specific to the shipment’s origin.

Delivery Shortfalls and Instruments Construction

Delivery Shortfalls. Inspired by our discussion in Section 2, the core measure of interest, delivery
shortfall, is constructed to quantify the deviations in k-month cumulative import volumes relative to a
baseline year, capturing the impact of delivery delays at the firm and product level. Specifically, monthly
delivery shortfalls are calculated as a smooth percent deviation of a k-month cumulative imports in a
specific month from their 2019 levels in the samemonth. Hence, the year 2019 serves as a pre-disruption
benchmark. Deviations from that benchmark “schedule" will proxy for inventory disruptions of the firm.
The delivery shortfall at the firm-HS-code level is defined mathematically as:

Delivery Shortfall f ,h,t(k) = −

t
∑

m=t−k

Df ,h,m −
t,2019
∑

m=t−k,2019

Df ,h,m

�

t
∑

m=t−k

Df ,h,m +
t,2019
∑

m=t−k,2019

Df ,h,m

�

/2

,

where Df ,h,m represents the observed imports for firm f and product code (HS) h in month m.
This firm-HS-code-level measure is then aggregated to obtain a firm-level delivery shortfall by

weighting the HS-code shortfalls by their share in total imports in 2019 (a baseline year before dis-
ruption):

Delivery Shortfall f ,t(k) =
∑

h

ω2019
f h ×Delivery Shortfall f ,h,t(k),

where ω2019
f h represents the share of each HS-code h in the total imports of firm f in 2019. This aggre-

gation captures the overall impact of delivery disruptions at the firm level, accounting for the relative
importance of each product category in the firm’s baseline portfolio.
Our delivery shortfall measures are constructed using a stable sample of firms that had some import
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activity in 2019 and maintained an import presence in each subsequent year. This approach reduces
data noise and focuses the analysis on firms that consistently rely on imports.22 For this sample, we
identify each firm’s portfolio of HS codes and their import schedules in 2019 and track firm-HS-code (k-
month cumulative) deliveries over time (months) relative to the benchmark in 2019 (including zeros).23

Finally, we normalize the shortfall series to January 2020.
We use k = 3 as our baseline shortfall measure, but Figure 4 also shows how delivery shortfalls

evolve under alternative moving averages (k = 2 and k = 6). These shortfalls capture supply chain
disruptions, with larger positive deviations indicating more severe delays in the flow of goods. A sharp
increase in 2020, relative to the 2019 benchmark, reflects the unprecedented disruptions triggered
by pandemic-related lockdowns and labor shortages. Shortfalls rebounded in 2021, though the series
continues to exhibit fluctuations. As expected, longer moving averages smooth out short-term volatility
and result in less variable trends. Appendix Figure A.6 shows a wide heterogeneity in import shortfalls
across different HS codes. We observe a long right tail of products facing severe import shortfalls
throughout the recent period. This evidence highlights that supply chain challenges did not impact all
sectors equally, with some industries facing significantly more severe constraints than others.

Figure 4. Average Delivery Shortfall Over Time
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Notes: Weighted firm-level shortfalls over time. Panjiva sample. Weights are firm-level total
annual imports.

The approach exploits the granularity of BoL data to build a proxy for delivery delays by comparing
22There is substantial entry and exit in the BoL data, as shown in Appendix Figure A.5, which plots total import volumes for

the sample of firms with any deliveries in 2019—comparable to Figure A.4. While focusing on a stable sample of importers
helps reduce data noise, it also drops those firms that experienced extreme negative events and exited the market, potentially
leading to underestimating the negative effects of supply chain disruptions.
23This implies that entry of new HS codes within a firm over time obtains zero weights in these calculations, so that we

trace a deviation relative to the 2019 benchmark.
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current import volumes with pre-disruption levels. The shortfall measure captures deviations driven
by shipping disruptions, production delays, and other logistical frictions, providing a direct reflection
of firm-level supply chain shocks. However, we note that the change in delivery schedule can also be
caused by aggregate or individual demand factors. In their raw form, delivery shortfall measures do
not filter out these demand factors. In the regression analysis, we will include market-related trends to
filter out aggregate demand factors and use the IV approach to filter out the individual demand forces.

Instrument 1: Delivery Shortfall Exposure. We construct two instruments for delivery shortfalls:
Delivery Shortfall Exposure f ,t(k) and ∆Dwell Exposure f ,t(k). We define a firm’s exposure to delivery
shortfalls as follows:

Delivery Shortfall Exposure f ,t(k) ≡
∑

h∈SHS2

ω2019
f h ×Delivery Shortfallh,t(k)− f

,

where h ∈ SHS2 represents HS2 product codes, Delivery Shortfallh,t(k)− f
denotes the HS code-level ag-

gregate shortfall in a particular month(-year) t relative to that month in 2019, excluding the focal firm
f itself (leavout shifts). The weight ω2019

f h is the pre-determined share of firm f ’s imports in HS code
h as of 2019, before major supply chain disruptions occurred. This measure is a standard shift–share
instrument that exploits variation in firms’ import shares across HS codes, even within the same product
categories–an identifying assumption we validate in the data.

Instrument 2: Port Congestion Exposure. Next, we construct a shift-share instrument for port con-
gestion exposure using dwell-time variation across ports. The idea is that the longer the dwell times
due to port congestion, the more likely a delivery shortfall is to occur. This instrument leverages ex-
ogenous variation in port-level congestion, derived from detailed port dwell time data, combined with
firm-specific historical port usage patterns. The port dwell time data itself has been constructed from
high-frequency Automatic Identification System (AIS) vessel traffic information which provides high-
frequency location information of individual vessels at U.S. ports (Fuchs and Wong, 2022). Dwell time
is then defined as the duration a vessel spends moored at a pier with zero speed. Crucially, to isolate
port-specific conditions from variations due to the mix of ships calling, these raw dwell times (in logs)
are residualized by controlling for ship characteristics, particularly size (e.g., gross tonnage). This yields
a measure of port-level delay (in logs)(Residualized Dwell Timept) for port p at time (year-month) t that
is net of ship-specific factors.
We combine this port-level “shift" measure with firm-specific “shares" derived from BoL data. The

BoL data provides granular information on import shipments at the firm level, including the port of
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entry. From this, we calculate each firm f ’s historical reliance on different ports, measured as the share
of its total imports that arrived through a specific port p during a pre-determined base period (ω2019

f p ).
Using 2019 as a base period ensures these shares reflect established logistical relationships. The firm-
level shift-share instrument, representing firm f ’s exposure to port congestion, is then constructed by
weighting the port-specific residualized dwell time shifts by the firm’s historical port shares, summing
across all ports:

∆Dwell Exposure f t ≡
∑

p

ω2019
f p ×∆Residualized Dwell Timept .

Figure 5. Average Change in Dwell Time Exposure Over Time
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Notes: Weighted firm-level change in dwell time exposure over time. Panjiva sample. Weights
are firm-level total annual imports.

This instrument is designed to capture the variation in a firm’s exposure to import delays driven
by congestion at the specific ports it historically uses, isolating it from firm-specific demand or supply
shocks. The validity of the instrument relies on the standard shift-share assumptions: relevance (the
instrument predicts actual firm-level delays/shortfalls) and exclusion (the instrument, conditional on
controls, only affects the firm’s outcomes through its impact on import delays/congestion). That is,
port-level congestion patterns from ports a firm historically used should not directly affect the firm’s
outcomes today, other than via the channel of current import disruptions.
Figure 5 plots the evolution of the average change in firm-level dwell time exposure. The series

shows a sharp increase in port congestion during the heightened inflationary period, reflecting severe
bottlenecks in global shipping and longer delays in moving goods through US ports.
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Figure 6. Marginal Cost Changes: Unit Value and Freight Cost Ratio Exposures
(A) Mean change in unit cost exposure
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(B) Mean change in freight cost ratio exposure
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Notes: Weighted average of firm-level year-to-year changes in exposure to the unit value and freight cost ratio over time. Panjiva firms. Weights are firm-level annual

total imports.

3.3 Marginal Cost Shocks: Unit Import Cost and Freight Cost

We obtain shocks to marginal costs by proxying the imported–input component of marginal cost using
two aggregates from U.S. Census merchandise trade: (i) a unit import cost index at the HS2 level
(indexed by h), UVh,t ≡ FOBh,t/Qh,t (customs value per physical quantity), and (ii) a freight/insurance
index at the port level (indexed by p), FRp,t ≡ CIFp,t/FOBp,t . We take 12–month log changes and map
these series to firm f using fixed pre–period (2019) exposure weights derived from Panjiva:

∆UnitC f ,t =
∑

h

ω2019
f h ∆12 lnUVh,t , ∆FreightC f ,t =

∑

p

ω2019
f p ∆12 lnFRp,t ,

where ω2019
f h is the share of f ’s 2019 imports in HS2 category h and ω2019

f p is the share from port p.24

Figure 6 shows the evolution of the two data series over time. Both components of import costs—unit
values and transportation costs—rose sharply during the inflationary period, reflecting surging global
input prices and severe pressures in shipping and logistics.

3.4 Numerator-Panjiva Match

We link the Numerator consumer purchase data to BoL records from Panjiva by matching firm names
across the two datasets. The process begins with themanufacturer, parent brand, and brand information
in Numerator, and then matches them hierarchically to consignee (and, if needed, shipper names) in
Panjiva, after extensive name cleaning and standardization to address name spellings, formats, and
inconsistencies (e.g., embedded location details in Panjiva name field). This approach yields a firm-
level link between product sales transactions and import activity, which forms the basis for our analysis.
24For exposition, one can also summarize the imported–input contribution as ∆MC f ,t ≈ φc

�

∆UnitC f ,t +∆FreightC f ,t

�

;
in practice we use the two components separately.
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Details of the matching procedure, data cleaning, and examples are provided in Appendix B.3.
From the matching procedure between our cleaned baseline Numerator product sample and Panjiva

data, we obtain the following. Of the 3.5 million product-month observations in Numerator from 2019
to 2023, 2.6 million are from firms whose names match at least once to Panjiva BoL. Among these,
1.5 million observations also have our shortfall measure–that is, they match to the cleaned baseline
Panjiva sample of stable importer firms (cleaning procedure described above). We refer to this subset
as the baseline Numerator–Panjiva sample, which accounts for 43% of all product-month observations
and 50% of total sales. This is our primary sample for the analysis, though complementary samples are
used where noted below.

Summary Statistics. The matched Numerator–Panjiva dataset provides a detailed view of how inter-
national trade dynamics, such as delivery delays and import disruptions, affect firm-level pricing and
sales in the U.S. market. Table 1 reports summary statistics for both the full Numerator sample and the
baseline Numerator–Panjiva matched sample.

Table 1. Summary Statistics at the Product-Date Level

Full Numerator Sample Numerator-Panjiva Sample
Number of observations 2,906,983 1,251,377
Date range 2019 - 2023 2019 - 2023
Distinct number of products 126,738 48,316
Distinct number of firms 28,767 4,056
Distinct number of brands 43,277 12,333
Distinct number of product-categories 3,982 3,594
Distinct number of product-descriptions 217 211
Average price changes 0.044 0.047
Average sales 1,358,296 1,701,967
Average number of transactions - all users 721.031 956.376
Average number of transactions - static users 342.480 442.228
Panjiva firm dummy 0.430 1.000

Notes: This table presents summary statistics at the product-month level from 2019 to 2023. Column (1) shows statistics for the full Numerator sample
(after cleaning procedures as described in Section 3.1). Column (2) shows statistics for the baseline Numerator-Panjiva matched sample (with Panjiva
cleaning procedures as described in Section 3.2).

Which firms experienced the largest price increases during the recent inflationary period? Figure 7
shows that bigger firms and those with higher market shares faced the steepest hikes. Panel (A) bin-
scatters product-level 12-month price changes against log firm size, defined as average yearly sales in
the Numerator, controlling for product department and year effects. Panel (B) plots the same outcome
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Figure 7. Price Changes, Firm Size, and Supply Chain Diversification
(A) Product Price Growth vs Firm Size
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(B) Product Price Growth vs Firm Market Share
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(C) Product Price Growth vs Supplier Countries
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(D) Product Price Growth vs Industry-Supplier Coun-
tries
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Notes: (A) Binscatters of product-level price changes against log firm size, defined as the average yearly sales of the firm in Numerator, residualized for year and department

fixed effects. (B) Binscatters of product-level price changes against firm market share, defined as the firm’s average sales share in its product category in a year, residualized for

year and department fixed effects. (C) Binscatters of product-level price changes against the number of countries the firm sources from, controlling for firm size, residualized

for year and department fixed effects. (D) Binscatters of product-level price changes against the number of countries the firm’s industry sources from for various HS codes,

controlling for firm size, residualized for year and department fixed effects.

against firm market share within product categories, again conditional on department and year effects.
The lower panels highlight the role of supply chain diversification. Panel (C) shows a negative correla-
tion between price growth and the number of sourcing countries at the firm level, conditional on firm
size. Panel (D) shows a similar negative correlation when diversification is measured at the HS-code
level. These raw correlations suggest that firms with broader sourcing networks may have faced fewer
disruptions and, in turn, smaller price hikes.
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4 Analysis

This section examines how supply-chain disruptions –delivery shortfalls, unit import cost shocks, and
freight cost shocks– affect firm pricing. We first estimate pass-through of a firm’s own disruptions,
characterize the timing of price adjustments, and document heterogeneity across product categories.
We then introduce strategic interactions and show that competitors’ disruptions also raise a firm’s
prices—over and above the effect of its own shocks, and that these spillovers extend even to non-
importing firms.

4.1 Identifying Pass-Through of Own Supply Chain Disruptions to Prices

Empirical specification. Guided by the simple model’s local decomposition dp = α dmc + βs d ln s,
we estimate a reduced form in which (i) availability enters via firm-level delivery shortfalls, our proxy
for ∆ ln s, and (ii) marginal cost change is decomposed into unit-import and freight components. Con-
cretely, we estimate

∆Pricep, f ,t = φs Shortfall f ,t(k) + φM∆UnitC f ,t + φF ∆FreightC f ,t + θ f + θ j(p)q(t) + εp, f ,t , (1)

where ∆Pricep, f ,t is the 12-month change in the price of product p at firm f in month t; Shortfall f ,t(k)

is the k-month cumulative delivery shortfall (baseline k = 3, Section 3.1); and∆UnitC f ,t , ∆FreightC f ,t

are firm shift-share exposures to unit-import and freight cost changes (Section 3.3). Firm fixed effects
(θ f ) absorb time-invariant heterogeneity in pricing, and category×quarter fixed effects (θ j(p)q(t)) absorb
common market-specific demand/supply movements.
Equation (1) is the one-to-one empirical counterpart to the theory, specifically (E3): delivery short-

falls are a monotone proxy for availability, ∆ ln s f ,t ≈ −φ1 Shortfall f ,t(k) with φ1 > 0, so the estimated
φs recovers the availability channel scaled by measurement, i.e., φs = −βsφ1 and is therefore expected
to be positive. On the cost side, the model implies that changes in unit-import and freight costs en-
ter dmc with output elasticities θM and θF ; accordingly, φM and φF identify αθM and αθF , i.e., the
same own pass-through α multiplying the relevant cost elasticities. For comparability with the cost
pass-through literature, we scale right-hand-side cost exposures by industry import-intensity weights;
shortfalls, similarly, are scaled with intermediates import shares.25
25Specifically, using the BEA Input-Output Accounts data, we compute import shares of 0.094 for those industries that map

to consumer product sectors in the Numerator and scale unit cost and freight cost series to align with the interpretation of
these coefficients as the pass-through of marginal cost shocks to prices. For shortfall-related series, we scale by 0.125, which
is the import share of intermediates, to align with the interpretation of these coefficients as the pass-through of availability
shocks to prices.
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Idiosyncratic demand shocks may bias OLS estimates of the shortfall coefficient φs. For example, a
positive product–specific demand shock can prompt a firm to accelerate orders, mechanically shrinking
measured shortfalls and attenuating φs toward zero. Measurement error in the shortfall proxy (our
local linear map from∆ ln s to Shortfall f ,t(k)) can generate the same attenuation. To address endogene-
ity, we implement a shift–share IV that instruments Shortfall f ,t(k) with Delivery Shortfall Exposure and
∆Dwell–time Exposure, as described in Section 3.2. These exposures aggregate plausibly exogenous
congestion shocks across the firm’s pre–period import portfolio (origins, ports, lanes, and products),
providing firm–time variation in predicted shortfalls that is orthogonal to idiosyncratic demand after
conditioning on firm and (Numerator) product category × time effects. This IV design isolates the sup-
ply–side component of availability movements, so the second–stage φ̂s recovers the model’s availability
channel (formally, −βsφ1), rather than confounding demand.

Results. We begin by estimating baseline pass-through elasticities using both OLS and instrumental
variables (IV) to identify the causal effect of supply chain disruptions—delivery shortfalls, import costs,
and freight cost shocks—on prices. These estimates provide a benchmark for the magnitude and timing
of firms’ price adjustments to these disruptions.
Table 2 reports the results corresponding to equation (1). The dependent variable is the 12-month

price change at the product-month level, estimated on the Numerator–Panjiva matched sample for
2020–2023. Our baseline shortfall measure captures deviations from cumulative import deliveries over
a three-month horizon (k = 3). Column (1) presents OLS estimates, while Column (2) replaces di-
rect shortfalls with a shift-share shortfall exposure measure. Columns (3)–(5) instrument firm-level
shortfalls using shortfall exposure and exposure to changes in dwell times. All specifications include
firm fixed effects and category-time fixed effects to absorb constant firm-specific pricing factors and de-
mand shifts at the product-category level. Table A.3 shows that the instruments are strong: the weak-IV
F-statistics range from 118 to 371, well above conventional thresholds.
Across specifications, all pass-through coefficients on delivery shortfalls and cost shocks are positive,

but OLS estimates on shortfalls are biased downward—likely reflecting unobserved demand shocks. Us-
ing shift-share exposure in Column (2) raises the estimated effect, while IV estimation further increases
the coefficients, yielding stable elasticities above 0.21. The pass-through elasticities on cost shocks are
sizable but generally lower than the estimates in the literature.
Columns (4) and (5) extend the specification to include one-month lags of shortfalls and cost vari-

ables. For shortfalls, only contemporaneous shocks matter; lagged effects are insignificant, consistent
with the shortfall measure already reflecting cumulative three-month deviations. By contrast, for import
and freight costs, lagged shocks are more important, suggesting that rising marginal costs pass through
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Table 2. Price Effects of Own Supply Chain Disruptions. Baseline Pass-Through Estimates

∆P ∆P ∆P ∆P ∆P
(OLS) (OLS-Shift Share) (IV) (IV) (IV)

Shortfall 0.006 0.108∗∗∗ 0.211∗∗∗ 0.241∗∗∗ 0.267∗∗∗
(0.0047) (0.0378) (0.0770) (0.0795) (0.0853)

∆UnitC 0.151∗∗ 0.152∗∗ 0.146∗∗ 0.037 0.032
(0.0607) (0.0607) (0.0613) (0.0670) (0.0671)

∆F reightC 0.097∗∗ 0.104∗∗ 0.154∗∗∗ 0.028 0.033
(0.0437) (0.0438) (0.0496) (0.0585) (0.0591)

Lag Shortfall -0.050 -0.041
(0.0761) (0.0745)

Lag ∆UnitC 0.214∗∗∗ 0.218∗∗∗
(0.0674) (0.0673)

Lag ∆F reightC 0.230∗∗∗ 0.231∗∗∗
(0.0552) (0.0552)

Firm FE ✓ ✓ ✓ ✓ ✓
Cat-Quarter FE ✓ ✓ ✓ ✓ ✓
Observations 969539 969539 968175 939819 939819
Weak IV F-stat 371.986 124.526 118.615

Notes: The table reports regressions of 12-month price changes on measures of own supply chain disruptions, estimated using product-month-level
Numerator–Panjiva matched data for 2020–2023. Column (1) uses the Shortfall measure in OLS; Column (2) uses the Shortfall Exposure measure
instead; the remaining columns report IV estimates using Shortfall Exposure and Dwell Time Exposure as instruments. Column (5) additionally includes an
import dummy equal to one if the firm has positive imports in that month. The baseline measure of shortfalls is based on the deviation from cumulative
import deliveries over a 3-month horizon (k = 3). All specifications include firm and product category–quarter fixed effects. Standard errors, clustered at
the product category–quarter level, are reported in parentheses. ∗∗∗, ∗∗, ∗: significance at the 1%, 5%, 10% levels, respectively.
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with a short delay. Column (5) also adds an import dummy (equal to one if the firm imports in that
month), but this inclusion does not materially change the results.
We further investigate the timing of firms’ price responses to delivery shortfalls in Figure 8. The fig-

ure plots coefficients from separate IV regressions of 12-month product-level price changes on delivery
shortfalls defined at different horizons of moving average deviations (k months), following the specifi-
cation in Column 5 of Table 2. The results show that the horizon of the delivery shortfall matters for
pass-through. When disruptions are short-lived, firms tend to absorb more of the shocks. As shortfalls
become more prolonged, however, pass-through to prices increases, suggesting that firms adjust once
they recognize the shocks are persistent and cannot be absorbed internally.

Figure 8. Pass-Through Estimates for Different Horizons of Delivery Shortfalls
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Notes: The figure depicts coefficients from separate IV regressions of 12-month product-level price changes on firm-level delivery shortfalls in moving
averages at different horizons (in months). The specification follows Column 5 of Table 2 and includes controls for current and lagged changes in unit and
freight costs, an import dummy, and firm and product-category-quarter fixed effects. Red dots indicate regression coefficients; dashed lines represent 90%
confidence intervals. Standard errors are clustered at the product-category-quarter level.

Overall, the findings show that both disruptions to delivery schedules and increases in marginal
costs due to higher import and freight expenses were significantly passed through to consumer prices
during the pandemic. Appendix Table A.4 examines heterogeneity by product type. While durable
goods experienced markedly higher price growth during the pandemic, evidence of a higher elasticity
of delivery-delay pass-through for durables is weak.26 This suggests that much of the observed price
growth in durable goods reflected heightened demand rather than stronger supply-side pass-through.
26Following Argente et al. (2020), we measure durability as the inverse of the frequency of trips the average household

makes to purchase products in a department over a year. Table A.2 lists the most and least durable departments.
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4.2 Strategic Interactions

Extraordinary supply chain disruptions during and after the pandemic, together with an extreme and
broad surge in inflation, led many commentators to wonder whether firms passed through aggregate
shocks above and beyond the disruptions they directly experienced.27 Yet firms’ pricing decisions reflect
not only the pass-through of their shocks but also the market forces that govern consumer realloca-
tion and discipline market power. Indeed, a sizable literature documents strategic complementarities
in pricing across different settings (Amiti, Itskhoki and Konings, 2019; Albagli et al., 2025), naturally
raising the question of whether consumer price increases during this period reflected such strategic in-
teractions among firms. In this section, we extend our baseline analysis of own supply chain disruptions
to explicitly incorporate competitive spillovers through rivals’ disruptions.

Theoretical motivation. As before, we start by motivating our empirical specifications with theory.
Building on the simple model in Section 2, we now allow for strategic interactions across firms. Intu-
itively, each firm sets prices taking into account not only its own costs and availability but also how
rivals’ conditions shift the overall competitive environment. Formally, a firm’s optimal price can be writ-
ten as a fixed point in which markups depend on its own fundamentals and on the prevailing sectoral
price and availability conditions.28

The key step is to translate this best–response logic into an expression that depends only on funda-
mentals. Rivals’ prices, which appear in the firm’s first–order condition, can themselves be expressed in
terms of their marginal costs and availability shocks. Aggregating those responses with share weights
yields sector–level indices for competitors’ marginal costs and availability.29 Substituting these rival
responses back into firm i’s condition yields our empirical specification:

∆pi t =
1

1+Γi t
︸︷︷︸

α

∆mci t +
Λi t

1+Γi t
︸︷︷︸

β

∆τi t +
Γ−i t

1+Γi t
ᾱ−i t
︸ ︷︷ ︸

γmc

∆mc−i t +
�

Λ−i t
1+Γi t
+ Γ−i t

1+Γi t
β̄−i t

�

︸ ︷︷ ︸

δτ

∆τ−i t + ϵi t . (2)

The first two coefficients, α and β , correspond to the direct effects from Section 2: pass–through of
own costs and the impact of own availability. The new terms capture strategic interactions. When com-
petitors’ costs rise, their prices adjust upward on average; because firm i’s markup condition depends
27Baqaee and Farhi (2022); Glover, Mustre-del Río and von Ende-Becker (2023). The idea of “greedflation” also gained

traction, suggesting that firms exploited extraordinary shocks to raise prices to opportunistically increase profits – see Robert
Reich’s testimony to Congress (April 5, 2022); Weber and Wasner (2023).
28Formally, firm i’s price satisfies p̃i t = mci t +Mi(p̃i t , τ̃i t , p−i t ,τ−i t ;ξt), with Γi t and Λi t denoting the own-price and

own-availability derivatives, and Γ−i t and Λ−i t the sensitivities to rivals. Linearizing and substituting the firm’s own price
reaction delivers the reduced-form above. Details in Appendix A.2.
29We show in Appendix A that rivals’ aggregate responses can be written as∆p−i t ≈ ᾱ−i t∆mc−i t+ β̄−i t∆τ−i t , where ᾱ−i t

and β̄−i t are weighted averages of rivals’ pass–through and availability sensitivities.
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on the sectoral price level, this generates a complementary response, captured by γmc. Rivals’ availabil-
ity, in turn, influences firm i both directly (more sectoral availability relaxes scarcity, pushing i’s price
down) and indirectly through rivals’ own price adjustments. The composite coefficient δτ therefore
summarizes both a direct markup effect and an indirect price–mediated channel. The resulting spec-
ification, hence, nests the simple model’s scarcity mechanism and quantifies how both own and rival
supply–chain fundamentals transmit into prices through the same generalized–elasticity channel.

Empirical specification. Building on these theoretical foundations, we extend the own–effects regres-
sion by adding competitor indices of delivery shortfalls and cost movements via unit import and freight
cost shocks. Specifically, we estimate:

∆Pricep, f ,t = φs Shortfall f ,t(k) + φM∆UnitC f ,t + φF ∆FreightC f ,t

+ ψs Shortfall− f , j(p), t(k) + ψM∆UnitC− f , j(p), t + ψF ∆FreightC− f , j(p), t

+ θ f + θ j(p)q(t) + εp, f ,t .

(3)

As before, ∆Pricep, f ,t is the 12-month price change for product p at firm f and month t, and the own
variables are as in the baseline. Rival indices X− f , j, t are leave–one–out, revenue–share–weighted aver-
ages of the rivals’ variables–X ∈ {Shortfall, ∆UnitC, ∆FreightC}– within market j = j(p). Specifically,
with firm revenue shares Sg j t for each firm g in market j(p), define ω f g,t = Sg j t/(1 − S f j t) and set
X− f , j, t =
∑

g ̸= f ω f g,t X g,t . Firm fixed effects θ f absorb time-invariant firm heterogeneity in pricing, and
category-quarter effects θ j(p)q(t) absorb common demand or supply shocks. As before, cost exposures
and shortfall-related variables are scaled so that coefficients can be read as pass-through elasticities.

4.2.1 Results

Table 3 brings strategic interactions to the fore. As in the baseline, Columns (1)–(2) report OLS and OLS
with the shift–share shortfall exposure, while the remaining columns implement the IV strategy that
instruments own firm-level shortfalls with shortfall- and dwell-time exposures. Appendix Table A.5 re-
ports the first-stage results, showing strong instruments with F-statistics comfortably above conventional
thresholds.
The first three columns tell a familiar story for own disruptions– the IV coefficients are sizable and

precisely estimated. The novel result is that competitors’ disruptions also matter for a firm’s pricing. In
Column (3), the IV estimates imply that delivery delays faced by rivals pass through into a firm’s prices
with an elasticity around 0.12—smaller than the effect of own shocks, but economically meaningful.
Firms also significantly respond to competitors’ cost shocks.
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Table 3. Pass-Through of Supply Chain Disruptions. Strategic Interactions

Importing firms All firms

OLS OLS-Shift Share IV IV IV

Shortfall 0.005 0.112∗∗∗ 0.221∗∗∗ 0.322∗∗∗ 0.274∗∗∗
(0.0048) (0.0379) (0.0768) (0.0591) (0.0595)

∆UnitC 0.155∗∗ 0.157∗∗∗ 0.151∗∗ 0.270∗∗∗ 0.203∗∗∗
(0.0608) (0.0608) (0.0613) (0.0549) (0.0588)

∆F reightC 0.098∗∗ 0.105∗∗ 0.159∗∗∗ 0.066∗∗ 0.088∗∗
(0.0438) (0.0439) (0.0498) (0.0331) (0.0414)

Shortfall, compet -0.003 -0.007 0.122∗∗∗ 0.133∗∗∗
(0.0132) (0.0130) (0.0464) (0.0286)

∆UnitC , compet 0.351∗∗ 0.349∗∗ 0.346∗∗ 0.366∗∗∗
(0.1626) (0.1625) (0.1637) (0.1314)

∆F reightC , compet 0.194∗ 0.212∗∗ 0.234∗∗ 0.069
(0.1037) (0.1039) (0.1053) (0.0806)

Shortfall, compet Imp. 0.108∗∗∗
(0.0280)

Shortfall, compet Non-Imp 0.117∗∗∗
(0.0323)

∆UnitC , compet Imp. 0.616∗∗∗
(0.1477)

∆UnitC , compet Non-Imp. -0.012
(0.1631)

∆F reightC , compet Imp. 0.019
(0.0875)

∆F reightC , compet Non-Imp. 0.135
(0.0894)

Firm FE ✓ ✓ ✓ ✓ ✓
Cat-Quarter FE ✓ ✓ ✓ ✓ ✓
Observations 962815 962815 961451 1671773 1671773
Weak IV F-stat 387.074 705.376 707.173
Notes: The table reports regressions of 12-month price changes on measures of own and competitor’s supply chain disruptions, estimated using
product-month-level data. Columns (1)-(3) use Numerator–Panjiva matched data for 2020–2023, while columns (4)-(5) also add non-importing firms
that do not ever match to Panjiva. Column (1) uses the Shortfall measure in OLS; Column (2) uses the Shortfall Exposure measure instead; the remaining
columns report IV estimates using Shortfall Exposure and Dwell Time Exposure as instruments for Shortfall. All specifications include import dummy and
firm- and product category–quarter fixed effects. Standard errors, clustered at the product category–quarter level, are reported in parentheses. ∗∗∗, ∗∗, ∗:
significance at the 1%, 5%, 10% levels, respectively.
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Columns (4)–(5) expand the sample to include Numerator firms that never match to Panjiva, pooling
importers and non-importers. Column (4) shows that the average pass-through, both own and com-
petitors’, is broadly similar to the importer-only sample. Column (5) then splits the strategic interaction
terms by the firm’s importing status. Even non-importing firms–those not directly exposed to supply
disruptions–raise prices when their importing competitors are hit, consistent with demand reallocation
toward unaffected sellers and the resulting slackening of competitive pressure.30

These findings highlight the role of strategic interactions in shaping the broader impact of supply
chain disruptions. Firms not only raised prices following their own supply shocks but also in response to
competitors’ disruptions, suggesting that aggregate shocks can propagate through competitive spillovers
and amplify overall effects.
Next, we examine how firms’ pass-through of their own and competitors’ delivery delays varies

with aggregate conditions. The question is whether pass-through intensifies in certain states of the
economy. Table 4 addresses this by re-estimating the baseline specification from column (5) of Table
3, interacting shortfall and competitor-shortfall coefficients with indicators for different states. We
consider two dimensions: high-inflation sectors and periods of elevated inflation.
The first column compares high- and low-inflation sectors. A High-inflation category is defined as a

product category–month with price growth above the annual median across all categories. Pass-through
of both own and competitors’ shortfalls is significantly stronger in these sectors. The second column cap-
tures periods following high inflation, when inflation perceptions and expectations are likely elevated.
A High-inflation month is defined as one with previous-month inflation above the annual median. Again,
pass-through is higher in these periods.
Overall, the state-dependent results show that inflationary pressures amplify firms’ ability to pass

costs through to prices.

5 Quantification

We now turn to a model–consistent accounting exercise in an impulse–response spirit. Because we
do not observe clean, disaggregate shocks for the full period, we feed aggregate monthly shock paths
into the estimated micro structure and trace how they propagate through market shares and strategic
interaction. Concretely, we use three aggregate series: delivery shortfalls, changes in port dwell times,
and changes in imported–input costs (unit import prices and freight). Market structure remains fully
micro (firm–level revenue shares within product markets), so the exercise maps common shocks into
30We cannot split the own shortfall and cost shocks effect by a firm’s importing status because these variables are mechan-

ically zero for non-importers.
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Table 4. State-Dependent Pass-Through of Delivery Shortfalls to Prices

(1) (2)
High-inflation category High-inflation month

Shortfall × Low State -0.717∗∗∗ 0.278∗∗∗
(0.0731) (0.0579)

Shortfall × High State 1.167∗∗∗ 0.367∗∗∗
(0.0704) (0.0628)

∆UnitC 0.165∗∗∗ 0.250∗∗∗
(0.0633) (0.0555)

∆F reightC 0.147∗∗∗ 0.071∗∗
(0.0386) (0.0331)

Shortfall, compet × Low State -0.175∗∗∗ 0.112∗∗∗
(0.0345) (0.0285)

Shortfall, compet × High State 0.375∗∗∗ 0.153∗∗∗
(0.0350) (0.0300)

∆UnitC , compet 0.460∗∗∗ 0.339∗∗
(0.1462) (0.1319)

∆F reightC , compet 0.164∗ 0.073
(0.0915) (0.0805)

Firm FE ✓ ✓
Cat-Quarter FE ✓ ✓
Observations 1671773 1671773
Weak IV F-stat 351.708 350.956

Notes: The table re-estimates the baseline specification from column (5) of Table 3, interacting shortfall and competitor-shortfall coefficients with
indicators for different states. In column (1), a High-inflation category is defined as a category–month with price growth above the annual median across
all categories. In column (2), a High-inflation month is defined as one with previous-month inflation above the annual median. Standard errors, clustered
at the product category–quarter level, are reported in parentheses. ∗∗∗, ∗∗, ∗: significance at the 1%, 5%, 10% levels, respectively.
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heterogeneous firm–product price responses via own pass–through and strategic feedback. We obtain a
full decomposition into direct and amplified responses to both cost shocks and supply chain disruptions.

Figure 9. Aggregate predicted price change: costs vs. availability, own vs. strategic components
Notes: The black line plots the fitted aggregate price change from the baseline specification. Shaded areas decompose the prediction into channels:
Cost Direct (own marginal-cost pass-through) and Cost Amp (amplification via strategic interactions with rivals’ costs) in blue; Delay Own (own
delivery shortfalls), Delay Strat (rivals’ availability), and their price-mediated amplification components Amp Own and Amp Strat in green. The
decomposition multiplies estimated coefficients from the baseline IV regression by observed firm-level fundamentals and share-weighted competitor
indices (leave-one-out weights S j t/(1−Si t )), and then aggregates to the sector level. Series are normalized to the pre-pandemic baseline (2019Q4=
0); the red dashed line marks the pandemic onset. Positive values denote year-over-year log price changes.

At the core of the exercise is a simple accounting for how monthly product–level prices move. We
write the change in log prices as

∆pt = (I − γWt)
−1

︸ ︷︷ ︸

X t (strategic multiplier)

�

α∆mct + β At + δWtAt

�

.

Here Wt is the leave–one–out revenue–share matrix that captures who competes with whom, with off-
diagonals wi j,t = S j t/(1− Si t) and zeros on the diagonal; γ > 0 measures how strongly a firm’s pricing
responds to rivals; and X t = (I − γWt)−1 stacks the rounds of best responses. The bracketed vector
collects the direct forces: (i) pass–through of marginal–cost changes (α∆mct), (ii) the effect of the
firm’s own availability (β At), and (iii) scarcity that arrives through rivals, weighted by market structure
(δWtAt). The multiplier X t then turns these direct impulses into equilibrium outcomes by propagating
them through the network of competitors. In reporting results, we keep this interpretation front and
center: the “direct” piece is the bracket, while “amplification” is the extra movement generated when
X t feeds the shock through rivals and back again.
We use three aggregate monthly shock series constructed in Section 3: (i) changes in unit-import
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price exposures, (ii) changes in freight cost exposures (our marginal–cost shocks; see Section 3.3), and
(iii) an availability composite built from delivery shortfall exposure and port dwell times (see Section 3.2
and Appendix Table A.5 for weights). All series are aligned by month-year, normalized to a 2019Q4
baseline, and (for the baseline specification) expressed in 12-month changes. We then merge these
common shocks to every product–month in the Numerator panel—there is no product-specific exposure
at this stage—so cross-sectional heterogeneity in predicted price responses comes solely from market
structure via the leave-one-out revenue-share matrix Wt and the estimated strategic parameters.
Our parameterization reflects the baseline micro estimates in column 4 of Table 3. As a result,

we construct aggregate marginal cost by combining unit import and freight cost with their respective
output elasticities mirroring (E3). Specifically, we set the output elasticities on unit imports and freight
at θM = 0.27 and θF = 0.06; the own–availability slope at β = 0.322; the rival–availability slope at
δ = 0.266; and the strength of strategic complementarities at γ = 0.54. The interaction matrix, Wt ,
uses pre–pandemic revenue shares within narrowly defined product markets.
The resulting decomposition in Figure 9 is intuitive. The fitted aggregate price series is the sum of

a cost piece and an availability piece, each with a direct component and an amplification component.
Cost shocks—unit values and freight—lift prices on impact via pass–through, and then a bit more as
competitors adjust. Availability plays the starring role in the run–up: when deliveries fall or dwell times
spike, firms serve fewer arrivals and raise prices; because many firms are hit at once, those increases
propagate through the network and are amplified. Dwell times are especially important at the height of
congestion, both because they depress availability broadly and because the multiplier is strongest when
many rivals face the same bottleneck. The framework also explains spillovers to firms with little direct
exposure: even non–importers move prices when they sell into markets where import–reliant rivals set
the reference point; so scarcity transmits through competitive interaction.
Two caveats guide interpretation. First, by treating the shortfall and dwell series as commonmonthly

impulses, we assume proportional exposure across firms once we fix market shares; in reality, shocks
were highly heterogeneous, but isolating the aggregate and heterogeneous shocks from the data without
a fully developed quantitative model is infeasible. Second, we hold parameters and (baseline) market
shares fixed, so we do not capture second–round changes in pass–through or market structure. We
therefore view the exercise as impulse–response accounting: it gives an indication of the qualitative
decomposition of different channels at play, delineating own pass-through of delay and cost shocks, and
highlighting the important role strategic complementarity played. Overall, our exercise highlights the
importance of delay shocks in combination with strategic complementarity.
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6 Conclusion

We study theoretically and empirically how supply chain disruptions shape consumer prices, focusing
on both firms’ own import shocks and strategic responses to competitors’ disruptions. On the theory
side, we derive a tractable markup rule that augments the Lerner condition with an endogenous avail-
ability term and extend it to a multi-firm setting with strategic complementarities. Empirically, we build
a large dataset linking shipment-level Bills of Lading to granular consumer prices and use shift–share
instruments based on congestion and input-cost shocks to identify causal pass-through. We find that
delivery delays raise prices materially and persistently, while imported-input costs have smaller effects,
and that sectoral disruptions spill over across firms, as competitors’ shocks also raise prices. An ac-
counting framework shows that these strategic interactions substantially amplify the price impact of
supply-chain shocks—most notably delay shocks—during the pandemic.
These findings argue for treating supply-chain resilience as a macro-prudential concern. High-

frequency indicators of inbound flows and port congestion could serve as early warnings when availabil-
ity constraints bind, while targeted investments in port capacity, warehousing, and diversified logistics
routings can mitigate the price impact of delays. Because prices are strategic complements, conges-
tion at one set of firms can elevate rivals’ markups, underscoring the importance of contestability and
competition in dampening amplification.
A natural next step is embedding our tractable pricing–inventory block in a full GE framework

with endogenous sourcing and inventories. Such a model would capture how firms’ collective re-
sponses—shifting suppliers or transport modes and holding precautionary inventories—can themselves
deepen congestion and amplify shocks in equilibrium. This would allow to quantify the aggregate ef-
fects of dis-aggregate supply chain disruptions and the evaluation of policy counterfactuals, such as port
expansions, routing diversification, or greater competition at logistics nodes.
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A Additional Derivations
This appendix collects formal derivations for Section 2.1 and Section 4.2, as well as additional discussions and microfoun-
dations.

A.1 Derivations: Simple Model (Section 2.1)
We retain the primitives and notation used in the text. Prices and marginal costs are parameterized in logs, p and c, with
corresponding levels P := ep and MC := ec . Demand intensity is λ(p) = Λe−σp with Λ,σ > 0. Replenishment lead times
are i.i.d. exponential with rate µ > 0 (mean 1/µ). The firm follows a base–stock policy at level τ ∈ N (lost sales). Define

r ≡
λ

λ+µ
∈ (0, 1), s(τ,λ,µ) = 1− rτ, κ(τ,λ,µ) ≡ λ

∂ s
∂ λ

= −τ(1− r) rτ.

Accepted (served) demand arrives at rate λs. One convenient closed form for expected on–hand inventory is

E[I(τ,λ,µ)] =
τ− r(τ+ 1) + rτ+1

1− r
. (A1)

Lemma 1 (Profit-rate equivalence). Let demand be Poisson with intensity λ(p) = Λe−σp and lead times i.i.d. Exp(µ), inde-
pendent of demand. Under a base–stock policy at level τ with lost sales, stationary/ergodic inventory, instantaneous sales at
demand epochs when I(t)> 0, instantaneous delivery resets to τ, and a constant per–unit level margin (P−MC), the long–run
average contribution (revenue net of unit cost, excluding holding cost) equals margin times the throughput of accepted demand:

lim
T→∞

1
T
E
∫ T

0

(P −MC)1{I(t)> 0} dN(t) = (P −MC)λ s(τ,λ,µ) = (P −MC)λ (1− rτ). (A23)

Equivalently, in renewal cycles delimited by consecutive deliveries,

(P −MC)E
�

min{N ,τ}
�

E[W ]
= (P −MC)λ (1− rτ), (A24)

where W ∼ Exp(µ) is the cycle length, N | W ∼ Pois(λW ), and hence N ∼ Geom
�

µ
λ+µ

�

on {0,1, 2, . . . }. The full average
profit rate including holding cost is

Π(p,τ) = (P −MC)λ
�

1− rτ
�

− hE[I(τ,λ,µ)], E[I] given by (A1). (A25)

Proof of Lemma 1 (renewal–reward). Consider renewal cycles starting immediately after a delivery (on–hand
= τ) and ending at the next delivery. LetW ∼ Exp(µ) be the cycle length. Conditional onW , the number of demand arrivals
is N |W ∼ Pois(λW ). Integrating outW (Poisson–exponential mixture) yields a geometric law on {0,1, 2, . . . } with success
probability p := µ/(λ+µ), so P{N = n} = (1− p)np and 1− p = r = λ/(λ+µ). Sales in a cycle equal min{N ,τ}. Using
the truncated–geometric identity,

E[min{N ,τ}] =
τ−1
∑

n=0

n(1− p)np+τ(1− p)τ =
1− p

p

�

1− (1− p)τ
�

=
λ

µ

�

1− rτ
�

.

By the renewal–reward theorem,

avg. sales rate= E[min{N ,τ}]
E[W ]

= µ ·
λ

µ

�

1− rτ
�

= λ (1− rτ).
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Multiplying by (P −MC) yields (A23). Subtracting the holding–cost flow hE[I] gives (A25). 1

Remark. The acceptance fraction used here is the arrival-epoch probability s(τ,λ,µ) = 1 − rτ; by PASTA it equals the
time-average availability, which is the appropriate object for throughput and profit-rate calculations.

Proof of Proposition 1. Profits per unit time in levels are

Π(p,τ) =
�

P −MC
�

λ(p) s
�

τ,λ(p),µ
�

− hE
�

I
�

τ,λ(p),µ
��

, P := ep, MC := ec . (A2)

Step 1 (pricing FOC for given τ). Let Q(p) := λ(p) s(τ,λ(p),µ). Then

∂

∂ p

�

(P −MC)Q(p)
�

= P Q(p) +
�

P −MC
�

Q′(p) = 0.

Divide by P Q(p)> 0:
P −MC

P
= −

Q′(p)
Q(p)

= −
d lnQ

dp
= −

d lnλ
dp
−
∂ ln s
∂ lnλ

d lnλ
dp

.

Since d lnλ/dp = −σ and ∂ ln s/∂ lnλ= (λ/s)∂ s/∂ λ= κ/s, we obtain the generalized Lerner rule,

P∗ −MC
P∗

=
1

σ
�

1+κ/s
� , (A3)

equivalently
p∗ = c − ln
�

1−
1

σ(1+κ/s)

�

. (A4)

Existence/uniqueness. The LHS of (A3), 1− ec−p, is strictly increasing in p from 0 (at p = c) toward 1; the RHS is weakly
decreasing in p because higher p lowers λ, raises s, and pushes κ/s ↑ 0, increasing the denominator. Hence a unique solution
exists.

Step 2 (discrete τ FOC). Using
∆s(τ) = s(τ+1)− s(τ) = rτ(1− r), (A5)

and, from (A1),
∆E[I] = E[I]
�

�

τ+1 −E[I]
�

�

τ
= 1− rτ+1, (A6)

the exact discrete condition equates marginal revenue and marginal holding cost:
�

P∗ −MC
�

λ rτ
∗
(1− r) = h
�

1− rτ
∗+1
�

. (A7)

Step 3 (continuous relaxation of τ). Let x := rτ ∈ (0, 1). Using ∂τs = −x ln r and ∂τE[I] = 1 +
r x ln r
1− r

, the FOC
becomes

�

P∗ −MC
�

λ (− ln r) x = h
�

1+
r x ln r
1− r

�

. (A8)

This linear equation in x has the unique solution

rτ
∗
= x∗ =

h

(− ln r)
�

(P∗ −MC)λ+
h r

1− r

�

∈ (0,1) . (A9)

1Alternative proof (PASTA). Let N(t) be the demand counting process (rate λ) and L(t) := 1{I(t) > 0} the availability
indicator. Instantaneous contribution is (P −MC) L(t) dN(t). By PASTA and stationarity,

lim
T→∞

1
T
E
∫ T

0

(P −MC) L(t) dN(t) = (P −MC)λE[L(0)] = (P −MC)λP{I > 0}.

Considering the superposed event process of demands and deliveries (i.i.d. types with P(demand) = r, P(delivery) = 1− r),
an arrival is served iff not all of the immediately preceding τ events were demands, which occurs with probability 1− rτ.
Hence P{I > 0}= 1− rτ and we recover (P −MC)λ(1− rτ). Including holding cost reproduces (A25).
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Proof of Corollary 1. We establish the availability elasticity, the sign of the price response via the implicit function
theorem, the inventory response, and the limits.

Step 1 (availability elasticity). With s = 1− rτ and ∂lnµr = −r(1− r),

∂lnµs =
∂ s
∂ r
∂lnµr =
�

−τrτ−1
� �

−r(1− r)
�

= τrτ(1− r),

so
∂lnµ ln s =

τ rτ(1− r)
1− rτ

> 0 . (A11)

Step 2 (price response). Let z := κ/s ∈ (−1, 0) and recall the levels Lerner rule (A3). Define

φ(p,µ) := 1− ec−p
︸ ︷︷ ︸

=(P−MC)/P

−
1

σ(1+ z(p,µ))
= 0. (A12)

Holding µ fixed, ∂ z/∂ p > 0; holding p fixed, ∂ z/∂ lnµ > 0. Hence

φp = ec−p +
1
σ

1
(1+ z)2

∂ z
∂ p
> 0, φlnµ =

1
σ

1
(1+ z)2

∂ z
∂ lnµ

> 0. (A13)

By the implicit function theorem,
∂lnµp∗ = −

φlnµ

φp
< 0 . (A14)

Step 3 (inventory response). Use the discrete FOC (A7):

F(τ,µ) :=
�

P∗ −MC
�

λ rτ(1− r)− h
�

1− rτ+1
�

= 0. (A15)

Differentiate F(τ∗(µ),µ) = 0 w.r.t. lnµ: Fτ ∂lnµτ
∗ + Flnµ = 0, i.e.,

∂lnµτ
∗ = −

Flnµ

Fτ
. (A16)

We have
Fτ = ln r
�

(P∗ −MC)λ rτ(1− r) + h rτ+1
�

< 0

since ln r < 0 and the bracket is positive; and

Flnµ = (P
∗ −MC)λ∂lnµ

�

rτ(1− r)
�

+λrτ(1− r)∂lnµP∗ − h∂lnµ

�

1− rτ+1
�

= h
�

1− rτ+1
��

r −τ(1− r)
�

+λrτ(1− r)∂lnµP∗ − h(τ+ 1)rτ+1(1− r) ≤ 0,

where we used (P∗−MC)λ=
h(1− rτ+1)
rτ(1− r)

, ∂lnµ

�

rτ(1− r)
�

= rτ(1− r)
�

r−τ(1− r)
�

, ∂lnµ

�

1− rτ+1
�

= (τ+1)rτ+1(1− r),
and ∂lnµP∗ = P∗ ∂lnµp∗ < 0 from (A14). Thus Flnµ < 0 and, with Fτ < 0, we conclude

∂lnµτ
∗ < 0 . (A17)

Step 4 (limits). As µ→∞, r → 0, hence s→ 1 and z→ 0−; (A3) implies

P∗ −MC
P∗

→
1
σ
⇒ P∗→ MC ·

σ

σ− 1
and p∗→ c + ln

σ

σ− 1
.

As µ→ 0, 1− r ∼ µ/(λ+µ), so s = 1− rτ ∼ τ(1− r)∼ τµ/(λ+µ); moreover ∂lnµz→ 0 so the pricing response becomes
locally flat, ∂lnµp∗→ 0−.
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From generalized Lerner to a linear price rule. Start from the generalized markup condition

p− c = M (p, ln s) :=
1

σ
�

1+ z(p, ln s)
� , z := κ/s ∈ (−1, 0). (D1)

Define F(p, c, ln s) := p− c −M (p, ln s) = 0. Totally differentiating around an operating point and collecting terms gives

(1−Mp) dp = dc + Mln s d ln s, (D2)

so the linear price rule is

dp = α dc + βs d ln s + ϵ, α :=
1

1+ Γ
∈ (0,1), βs :=

Λ

1+ Γ
< 0, (D3)

with Γ := −Mp > 0 and Λ :=Mln s < 0, all evaluated at the operating point. ForM (p, ln s) = [σ(1+ z)]−1,

Mp = −
zp

σ(1+ z)2
, Mln s = −

zln s

σ(1+ z)2
⇒ Γ =

zp

σ(1+ z)2
> 0, Λ= −

zln s

σ(1+ z)2
< 0. (D4)

Interpretation: a higher price relaxes scarcity (zp > 0) so own pass-through α ∈ (0, 1); higher availability raises the effective
elasticity (zln s > 0) so the availability coefficient βs < 0. The specification dp = α dc + βs d ln s is the estimable reduced
form used in the empirics.
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A.2 Derivations: Strategic Interactions (Section 4.2)
A.2.1 Deriving the Markup and Stock-in Best Response
Consider the profit maximization problem of firm i written in the conjectural variation form, where the firm chooses both
its log price pi and its log stock–in shifter τi . The problem is given by

max
pi ,τi , p−i ,τ−i

�

exp
¦

pi + qi

�

pi , p−i ,τi ,τ−i;ξ
�

+ si

�

qi ,τi

�

©

− T Ci

�

exp
�

qi

�

pi , p−i ,τi ,τ−i;ξ
�	

,τi

�

�

subject to h−i

�

pi ,τi , p−i ,τ−i;ξ
�

= 0.

Here, pi and qi are the log price and log quantity demanded of firm i; si(qi ,τi) is a function that shifts the effective stock–in
probability (so that higher si implies improved product availability); T Ci(·,τi) is the total cost function (in levels); and
h−i(·) is the conjectural variation vector function with elements hi j(·) for j ̸= i. (For brevity we omit the time subscript t.)

This formulation nests models of monopolistic competition, oligopolistic Bertrand competition, and oligopolistic Cournot
competition, provided that the demand system is invertible. In particular, to capture firm behavior under monopolistic and
oligopolistic Bertrand competition we may choose the conjectural variation function as

h−i

�

pi ,τi , p−i ,τ−i;ξ
�

=

¨

p−i − p∗−i ,

τ−i −τ∗−i ,

which corresponds to the assumption that firm i believes its choices do not affect its competitors’ prices (set at p∗−i) or
stock–in shifters (set at τ∗−i). The case of Cournot competition requires choosing h−i(·) so that it implies q−i ≡ q∗−i for some
given q∗−i; with an invertible demand system, this can be ensured by setting

h−i

�

pi ,τi , p−i ,τ−i;ξ
�

= −
�

q−i

�

pi , p−i ,τi ,τ−i;ξ
�

− q∗−i

�

.

Thus, the firm’s behavior under competition in both prices and product availability is captured by a conditional profit maxi-
mization problem.

We introduce the following notation:
1. epi+qiλi j for j ̸= i denotes the Lagrange multipliers associated with the constraints in the maximization problem.
2. ζi jk(p,ξ)≡ ∂ hi j(p,ξ)/∂ pk is the elasticity of the conjectural variation function with respect to pk, with ζi j j(·)> 0
as a normalization; the matrix Zi ≡ {ζi jk(·)} j,k ̸=i is assumed to have full rank. Similarly, we define

θi jk(p,ξ)≡
∂ hi j(p,ξ)

∂ τk
,

and denote by Θi ≡ {θi jk(·)} j,k ̸=i the corresponding matrix of cross–stock–in elasticities.
3. The own–price elasticity of demand is

εi(p,ξ)≡ −
∂ qi(p,ξ)
∂ pi

> 0,

and the cross–price elasticities are given by

δi j(p,ξ)≡
∂ qi(p,ξ)
∂ p j

( j ̸= i).

4. Similarly, define the effective own–stock–in elasticity as

ηi(p,τ,ξ)≡
∂
�

qi + si

�

∂ τi
> 0,
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and the cross–stock–in elasticities as

γi j(p,τ,ξ)≡
∂
�

qi + si

�

∂ τ j
( j ̸= i).

The first–order conditions (after simplification) for the profit maximization problem with respect to pi are then given by
�

1− εi + εi e−µi

�

+
∑

k ̸=i

λik ζiki = 0,

∀ j ̸= i
�

−δi j +δi j e−µi

�

+
∑

k ̸=i

λik ζik j = 0,

where the log markup is defined by µi ≡ pi −mci , with mci ≡ ln
�

∂ T Ci/∂Q i

�

being the log marginal cost. In the presence
of the stock–in shifter, the effective demand depends on both qi and si; consequently, the perceived elasticity of demand is
modified and given by

σi ≡ εi(1+κi)− ζ′i Z
−1
i δi − θ ′iΘ

−1
i γi ,

where κi ≡ ∂ si/∂ qi , and ζi ≡ {ζi ji} j ̸=i and δi ≡ {δi j} j ̸=i are (N − 1)× 1 vectors. The matrix Zi ≡ {ζi jk} j ̸=i, k ̸=i has full
rank by the invertibility assumption, and similarly for the stock–in part with θi ≡ {θi ji} j ̸=i and γi ≡ {γi j} j ̸=i and the matrix
Θi ≡ {θi jk} j ̸=i, k ̸=i .

Solving the first–order conditions yields the expression for the optimal markup of firm i:

µi = ln
σi

σi − 1
.

Since εi , ζi jk, and δi j are functions of (p,ξ) (and now also of τ through si), it follows that σi ≡ σi(p,τ;ξ). Therefore, we
define the log markup function as

Mi(p,τ;ξ)≡ ln
σi(p,τ;ξ)
σi(p,τ;ξ)− 1

.

Thus, the optimal price of firm i solves the fixed point equation

p̃i = mci +Mi

�

p̃i , τ̃i , p−i ,τ−i;ξ
�

.

An analogous argument, based on the first–order condition with respect to the stock–in shifter τi , leads to a similar
fixed point characterization for the optimal stock–in decision. Defining the effective stock–in elasticity as

φi ≡ ηi − ζτ′i Z−1
i δ

τ
i − θ

τ′
i Θ
−1
i γi ,

where ηi ≡ ∂ (qi + si)/∂ τi is the own elasticity with respect to τi and δτi ≡ {∂ qi/∂ τ j} j ̸=i , and where ζτi and θτi are the
corresponding derivatives of the conjectural variation function with respect to τi , we define the stock–in premium function
by

Ti(pi ,τi , p−i ,τ−i;ξ)≡ − ln
�

1−
mcτi
φi

�

,

with mcτi the log marginal cost of adjusting the stock–in shifter. Hence, the optimal stock–in shifter satisfies the fixed point
equation

τ̃i = mcτi +Ti

�

p̃i , τ̃i , p−i ,τ−i;ξ
�

.

This completes the proof of Proposition 1 (Extended). Notice that when the stock–in shifter is absent (or when si(·) is
constant), the above derivation reduces to the standard framework in which only price is chosen. In our extended model,
the generalized elasticitiesσi andφi capture both the direct demand sensitivities and the strategic interdependencies across
firms in the dimensions of price and product availability.

A.2.2 Deriving the Exposure Indices
Assume that product availability enters the expenditure function via a stock–in adjustment factor. In particular, let the log
aggregate expenditure be given by

A6



zt = ln min
{Q i t}

¨

N
∑

i=1

Pi tQ i t si t(τi t)
�

�

�U
�

{Q i t};Q t

�

= 1

«

.

Here, si t(τi t) adjusts the effective expenditure for product i based on its stock–in probability (or availability), with τi t
being the firm’s stock–in shifter.

Let E(s) denote the minimized expenditure:

E(s) =min
{Q i t}

¨

N
∑

i=1

Pi tQ i tsi t (τi t) | U ({Q i t} ;Q t) = 1

«

so that zt = ln E(s). At the optimum, let Q∗i t be the optimal quantity for firm i. Define the Lagrangian for the cost
minimization problem as

L ({Q i t} ,λ; s) =
N
∑

i=1

Pi tQ i tsi t (τi t)−λ (U ({Q i t} ;Q t)− 1)

By the Envelope Theorem, the derivative of the minimized expenditure E(s) with respect to si t is given by the direct
partial derivative evaluated at the optimum, i.e.,

∂ E(s)
∂ si t

=
∂ L
∂ si t

�

�

�

�

Q i t=Q∗i t

= Pi tQ
∗
i t

(Any indirect effects via the optimal Q∗i t vanish because the first-order conditions for Q i t ensure that ∂ L/∂Q i t = 0.)
Taking the derivative of zt = ln E(s) with respect to si t , we obtain

∂ zt

∂ si t
=

1
E(s)
·
∂ E(s)
∂ si t

=
Pi tQ

∗
i t

∑N
k=1 PktQ

∗
kt

In summary, by the Envelope Theorem applied to this cost minimization problem, differentiating zt with respect to si t
gives

∂ zt

∂ si t
=

Pi tQ
∗
i t

∑N
k=1 PktQ

∗
kt

≡ Si t ,

where Q∗i t is the optimal quantity for firm i and Si t is its expenditure (or revenue) market share. Now, if the availability
adjustment is given by a function si t = s(τi t), then by the chain rule we have

∂ zt

∂ τi t
=
∂ zt

∂ si t
·
∂ s(τi t)
∂ τi t

= Si t
∂ s(τi t)
∂ τi t

.

Next, suppose the markup function for firm i depends on competitors’ stock–in shifters only through an aggregate
availability index, so that we can write

Mi(pt ,τt ;ξt) = M̃i

�

pt , z
�

s(τt)
�

;ξt

�

.

Then, by the chain rule the partial derivative of the markup function with respect to a competitor j’s stock–in shifter is

∂Mi

∂ τ j
=
∂ M̃i

∂ z
·
∂ z
∂ s(τ)

·
∂ s(τ)
∂ τ j

.

By the Envelope condition we have already shown that

∂ z
∂ s(τ)

·
∂ s(τ)
∂ τ j

= S j t .

Hence, it follows that

∂Mi

∂ τ j
=
∂ M̃i

∂ z
S j t .
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When constructing the competitor delay index, we define the weight on competitor j as

ωτi j t ≡
∂Mi
∂ τ j
∑

k ̸=i
∂Mi
∂ τk

=
∂ M̃i
∂ z S j t

∂ M̃i
∂ z

∑

k ̸=i Skt

=
S j t

1− Si t
,

since the market shares of competitors sum to 1− Si t . Consequently, the competitor delay index is given by

dτ−i t ≡
∑

j ̸=i

ωτi j t dτ j t =
∑

j ̸=i

S j t

1− Si t
dτ j t .

This completes the proof: by explicitly incorporating product availability via the function s(τi t) into the aggregate
expenditure function, we derive—using the Envelope condition—that the marginal effect of a competitor’s stock–in shifter
on the markup function is proportional to its market share. Therefore, the competitor delay index aggregates individual
delay changes with weights ωτi j t = S j t/(1− Si t), analogous to the competitor price index in the original framework.
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A.3 Additional Derivations
A.3.1 Microfoundation for exponential lead times.
In the simple model we take the delivery (replenishment) lead time W to be exponential with rate µ. A standard way to
rationalize both the shape (memorylessness) and the scale ofW is via a heavy–traffic approximation for an upstream GI/GI/1
queue that processes replenishment orders.2

Setup. Consider an FCFS GI/GI/1 system that represents the upstream fulfillment “server.” Interarrival times have mean
1/λ and squared coefficient of variation c2

a ; service times S have mean E[S] = 1/µs and squared coefficient of variation
c2

s . Let the traffic intensity be ρ := λE[S] ∈ (0, 1). For a tagged order submitted in steady state, let W denote its waiting
(lead) time.

Lemma 2 (Heavy–traffic exponentiality of lead times). As ρ ↑ 1 (heavy traffic), the stationary lead time is asymptotically
exponential after the canonical scaling:

(1−ρ)
E[S]

W d Exp

�

2
c2

a + c2
s

�

.

Equivalently, for ρ close to one the distribution of W is well approximated by Exp(µHT) with

µHT ≈
2(1−ρ)

(c2
a + c2

s )E[S]
, E[W ] ≈

(c2
a + c2

s )

2
E[S]
1−ρ

.

Proof sketch. The stationary workload (and hence the waiting time under FCFS) of a GI/GI/1 queue admits a diffusion
approximation in heavy traffic: the centered–scaled workload process converges to a reflected Brownian motion (RBM) with
negative drift θ ∝ (1 − ρ)/E[S] and variance parameter proportional to c2

a + c2
s . The stationary distribution of an RBM

is exponential with rate 2θ/σ2, yielding the claimed limit for the scaled W . Matching the mean with Kingman’s formula,
E[W ]≈ ρ

1−ρ ·
c2

a+c2
s

2 E[S], confirms the scale.
Interpretation and mapping to the simple model. Lemma 2 provides a structural justification for taking lead times to be
exponential: in congested upstream environments the entire distribution ofW is approximately memoryless, with a rate that
moves one–for–one with the slack 1−ρ and is dampened by variability (c2

a + c2
s ). In our toy model we write W ∼ Exp(µ)

and treat µ as a reduced–form “replenishment speed.” The lemma implies that, under a GI/GI/1 microfoundation,

µ ≡ µHT ≈
2(1−ρ)

(c2
a + c2

s )E[S]
,

so shocks that raise upstream congestion (ρ ↑) or variability (c2
a or c2

s ↑) lower µ and lengthen expected lead times 1/µ. From
the firm’s perspective—especially when it is small relative to the sector—µ is naturally taken as exogenous, summarizing
the state of the upstream queue; the exponential assumption concerns the shape, while µ collects congestion and volatility
into a single sufficient statistic.
Sanity checks. (i) In the special case of an M/M/1 system (c2

a = c2
s = 1), the heavy–traffic mean reduces to E[W ] ≈

E[S]/(1− ρ), consistent with the exact M/M/1 formula at ρ ↑ 1. (ii) Lower variability or more slack (smaller ρ) raises
µHT and thus makes the exponential approximation concentrate at shorter lead times, matching the comparative statics we
exploit in the toy model’s pricing and inventory results.

A.3.2 Comparison with Kryvtsov and Midrigan (2013)
Pricing rules in compact form. Kryvtsov–Midrigan (KM) derive a frictionless reset price that multiplies a static
markup by an intertemporal shadow–value term:

Pi(s
t) =

ϵi(st)
ϵi(st)− 1
︸ ︷︷ ︸

static markup

× (1−δz) Et

�

Q(st+1)
Q(st ) Ω(s

t+1)
�

︸ ︷︷ ︸

value of a marginal unit in inventory

,

2Classical references include Kingman (1961) and Iglehart and Whitt (1970). We use the first–order stationary
heavy–traffic limit and Kingman’s formula as consistency checks for the mean.
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where the elasticity of expected sales ϵi(st) rises with availability (fewer stockouts), compressing markups, and the intertem-
poral term prices the shadow value of inventories. In our static base–stock model, availability enters algebraically through
the levels Lerner rule (Appendix A.1, eq. (A3)):

P∗ −MC
P∗

=
1

σ
�

1+ z
� , z := κ/s ∈ (−1,0),

so the effective demand elasticity is σ(1+z). The inventory margin is summarized by the exact discrete stockout–avoidance
condition (Appendix A.1, eq. (A7)):

�

P∗ −MC
�

λ rτ(1− r) = h
�

1− rτ+1
�

,

which equates the marginal revenue from an extra unit of buffer to its holding cost.

Alignment and differences. (i) Elasticity channel. KM’s ϵi(st) and our σ(1 + z) parameterize the same mecha-
nism: better availability raises the effective elasticity and lowers markups; both coincide with the frictionless benchmark as
stockouts vanish (z→ 0−).

(ii) Intertemporal vs. static scarcity. KM price the shadow value of inventories with a discounted continuation term; in
our steady-state, risk–neutral setting this collapses to the one–period stockout–avoidance margin in (A7). Scarcity in both
frameworks ultimately operates through the elasticity object that governs the markup.

(iii) Units and mapping. KM’s level markup ϵ/(ϵ− 1) maps to our gross markup µ= P/MC = σ(1+ z)
�

[σ(1+ z)− 1]
(from (A3)); locally, their reset-price rule linearizes to the same inverse–elasticity logic that underpins our log markup
m= p− c = − ln

�

1− 1/[σ(1+ z)]
�

.
(iv) Scope. KM embed inventories in a dynamic, nominally sticky environment where reset prices track discounted

targets. We collapse the same forces to closed-form static objects, which yields sharp pass–through coefficients and a linear,
empirically tractable decomposition into cost and availability channels used in the main text.
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B Data Appendix

B.1 Numerator Data
Numerator collects data from households in several ways. Using a mobile phone app called “Receipt
Hog," consumers can (1) snap and upload a picture of their paper receipts, (2) allow Numerator to
scrape their emails for digital receipts, and (3) link loyalty and membership accounts (such as Ama-
zon, UberEats, Walmart, and Home Depot accounts), which Numerator then scrapes for transaction
information. Panelists are rewarded with coins redeemable for Amazon or Visa gift cards or for cash
through PayPal. On average, Numerator rewards panelists approximately $10 per month for providing
their purchase information and completing surveys (Hacıoğlu Hoke, Feler and Chylak, 2024)
Our baseline sample excludes the items3 whose Numerator sector is either “Limited Service Restau-

rant,” “Restaurant,” “Non-Item,” “Unknown,” or “Indeterminate Category.” In addition, we restrict the
sample to the items for which we have non-missing brand or manufacturer information and at least one
non-missing product classification from category, majorcat, or department or a detailed product descrip-
tion. These restrictions give us a sample of 54,404,892 unique items sold during the period 2019-2023.
For these items, we have information on their classification: sub-category, category, major category, de-
partment, and sector (listed hierarchically from more detailed to more aggregated classification). An
example here would be the “Adult Cough/Chest Congestion” sub-category in the “Adult Cold Cough &
Flu” category, “Cold, Cough & Flu” major category, “Personal Health Care” department, and the “Health
& Beauty” sector. For more than 20 million items in our sample, we have detailed product descrip-
tions that provide more information about the packaging, weight, and other product attributes (e.g., CV
MUCUS REL 30 CT). In our regression analysis, we use a benchmark classification consisting of 4,000
distinct product categories.
Table A.1 shows the number of stores across various distribution channels in the data, while Fig-

ure A.1 shows expenditure shares and the number of unique item IDs by broadly defined sectors in
Numerator.

3Item ID is the finest product code available in Numerator. It is the product code that the data provider assigns based
on what looks like distinct products, however because of the lack of detailed product descriptions and barcodes for many
items, it is possible that exactly the same product is sold in different stores, but since it lacks barcode information, it has to be
treated as different item by the Numerator. In our analysis, since we define products at the firm-brand-product category level,
all these distinct item IDs that in reality describe the same product will be pooled together, getting closer to the definition
of a product.
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Table A.1. Stores: Summary Statistic of Distribution Channel
Channel Frequency Percent Cum.

Food 10,142 20.85% 20.85%
FSR - Regional/Ethnic 8,428 17.32% 38.17%
Gas & Convenience 7,421 15.25% 53.43%
Liquor 2,905 5.97% 59.40%
Bodega 2,317 4.76% 64.16%
Apparel 1,692 3.48% 67.64%
Drug 1,471 3.02% 70.66%
LSR - Bakery/Cafe 1,270 2.61% 73.27%
Beauty 999 2.05% 75.33%
Pet 990 2.04% 77.36%
Home Improvement 819 1.68% 79.05%
Craft 701 1.44% 80.49%
Online 531 1.09% 81.58%
Other 515 1.06% 82.64%
LSR - Ethnic/Regional 512 1.05% 83.69%
Dispensaries 433 0.89% 84.58%
Sporting Goods Stores 424 0.87% 85.45%
Postal Services 401 0.82% 86.27%
Other Retail Store 390 0.80% 87.08%
LSR - Coffee/Bakery 385 0.79% 87.87%
Book 357 0.73% 88.60%
Other Specialty Store 331 0.68% 89.28%
Dollar 311 0.64% 89.92%
Specialty Food Retailer 300 0.62% 90.54%
Mass 237 0.49% 91.03%
Health 226 0.46% 91.49%
Electronics 219 0.45% 91.94%
Shoe 203 0.42% 92.36%
Baby & Toy 201 0.41% 92.77%
Auto 194 0.40% 93.17%
LSR - Pizza 192 0.39% 93.56%
Department Store 181 0.37% 93.94%
FSR - Miscellaneous 181 0.37% 94.31%
LSR - Burger 137 0.28% 94.59%
Discount Store 134 0.28% 94.87%
Home Furnishings 128 0.26% 95.13%
Vapor Stores 121 0.25% 95.38%
FSR - Sports Bar 106 0.22% 95.59%
Tobacco Shops 97 0.20% 95.79%
Auto Services 95 0.20% 95.99%
Other Entertainment 89 0.18% 96.17%
Other Services 85 0.17% 96.35%
Office 81 0.17% 96.51%
Shopping Centers & Malls 74 0.15% 96.67%
Amusement Parks 71 0.15% 96.81%
Spas 69 0.14% 96.95%
LSR - Dessert Snack 67 0.14% 97.09%
Hotels & Resorts 66 0.14% 97.23%
CloseOut 62 0.13% 97.35%
Healthcare 61 0.13% 97.48%
Florists 53 0.11% 97.59%
LSR - Chicken 53 0.11% 97.70%
LSR - Mexican 52 0.11% 97.80%
LSR - Sandwich/Deli 52 0.11% 97.91%

Total 47,631 97.91%

Channel Frequency Percent Cum.

Military 49 0.10% 98.01%
School Tuition & Fees 49 0.10% 98.11%
FSR - American 46 0.09% 98.21%
Sports & Recreation 46 0.09% 98.30%
Mortgage Payment 44 0.09% 98.39%
FSR - Midscale 41 0.08% 98.48%
Farm 36 0.07% 98.55%
Movie Theatre 36 0.07% 98.62%
Outlet Store 36 0.07% 98.70%
Sports Entertainment 36 0.07% 98.77%
Other Association Fees 32 0.07% 98.84%
Wireless 32 0.07% 98.90%
Charities 31 0.06% 98.97%
Video 31 0.06% 99.03%
FSR - Italian/Pizza 29 0.06% 99.09%
FSR - Seafood/Steak 28 0.06% 99.15%
LSR - Salad/Healthful 28 0.06% 99.21%
Transport Hub 28 0.06% 99.26%
Music Stores 27 0.06% 99.32%
Gambling 24 0.05% 99.37%
Professional Services 24 0.05% 99.42%
Veterinarians 24 0.05% 99.47%
Public Markets 21 0.04% 99.51%
Yard Services 19 0.04% 99.55%
Banks 17 0.03% 99.58%
Doctors Office 17 0.03% 99.62%
Wholesale 17 0.03% 99.65%
Club 15 0.03% 99.69%
Parking Lot or Garage 15 0.03% 99.72%
Laundromat 13 0.03% 99.74%
Airline 11 0.02% 99.77%
Other Travel 11 0.02% 99.79%
Telecom 10 0.02% 99.81%
Utility Company 10 0.02% 99.83%
Media 9 0.02% 99.85%
Real Estate Services 9 0.02% 99.87%
Concert Hall or Theater 8 0.02% 99.88%
Other Government Payments 8 0.02% 99.90%
Child Care 7 0.01% 99.91%
Retail Services 7 0.01% 99.93%
Church Offerings 5 0.01% 99.94%
Car Rental 4 0.01% 99.95%
Copy Centers 4 0.01% 99.95%
Public Storage 3 0.01% 99.96%
Security Services 3 0.01% 99.97%
Taxi or Limousine 3 0.01% 99.97%
Travel Agency 3 0.01% 99.98%
Bakery 2 0.00% 99.98%
Cruise Line 2 0.00% 99.99%
Dance & Comedy Clubs 2 0.00% 99.99%
Bar or Night Club 1 0.00% 99.99%
Movers 1 0.00% 100.00%
Ticket Outlet 1 0.00% 100.00%
Unknown 1 0.00% 100.00%

Total 48,648 100.00%
Notes: The table shows the number of retailers identifying with a given channel. The sample is the entire Numerator data (2018-2023) with 48,648 unique
retailers and 108 unique channels. A.1
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Table A.2. Top 20 and Bottom 20 Departments by Durability
Department Sector Durability Index

Architecture & Design Books 1.000
Birthday Toys 1.000
Business Office Furniture Office 1.000
Office Lighting Office 1.000
Posters Books 1.000
Sustainability Books 1.000
Celebrate Childrens Books Books 0.975
Miscellaneous (Books) Books 0.975
Parenting & Families Books 0.966
Pressure & Temperature Tools & Home Imp. 0.959
Performing Arts Books 0.945
Romance Books 0.911
Carrying Cases Office 0.910
Biography & Memoirs Books 0.909
Office Furniture & Lighting Office 0.896
Stationary (Baby) Baby 0.890
Pregnancy & Maternity Baby 0.859
Sports & Recreation (Books) Books 0.836
Travel & Nature (Books) Books 0.833

Department Sector Durability Index

Paper & Plastic Household 0.017
Lottery Non-Item 0.017
LSR Beverages LSR 0.017
Packaged Bakery (Bread & Alternative) Grocery 0.016
Canned Grocery 0.016
Shelf Stable Meals Grocery 0.016
Alcohol Beverages Grocery 0.014
Baking & Cooking Grocery 0.012
Combustible Nicotine Products Tobacco 0.011
Candy (Snacks) Grocery 0.011
Meat Grocery 0.009
Infant Toddler Nutrition Baby 0.009
Frozen Foods Grocery 0.008
Snack Grocery 0.006
Pet Food & Treats Pet 0.006
Dairy Grocery 0.005
Beverages Grocery 0.005
Mobile App Downloads Electronics 0.005
Produce Grocery 0.003

Notes: The table reports the 20 most and 20 least durable departments, where durability is defined as the inverse of the average number of transactions
per user within a department. The calculation is based on users who were continuously present in the static panel for all 12 months of 2023. Tools &
Home Imp: Tools and Home Improvement. LSR: Limited Service Restaurant. Tobacco: Tobacco Products and Accessories.
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Figure A.1. Consumer Expenditures and Products by Sectors in Numerator

(A) Expenditure Shares by Sector

(B) Unique UPCs by Sector

Notes: (A) The figure shows the product-sector level share of total Numerator expenditures ($4 billion from $683 million transactions) in 2022. A rough
benchmark comparisonwith the 2022 Consumer Expenditure Survey (CEX) suggests that the relatively large share of grocery-related spending in Numerator
is expected. The CEX describes 52.6% of all expenditures as belonging to categories similar to those captured by Numerator. Among these similar categories,
food comprised 69.1% of spending, while in Numerator, a similar category (Grocery, FSR (Full-Service Restaurants), LSR (Limited-Service Restaurants),
Tobacco) comprised 51.4% of consumer outlays. (B) This figure shows the number of unique UPCs by product-sector from the set of all 2022 transactions
from our baseline sample.
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Figure A.2. Demographic Comparison between Numerator and ACS

Notes: The US Census ACS data is from IPUMS, weighted by personal weight (perwt), and covers 2019. Demographic information from Numerator data is based on a static sample of 400,000 panelists

covering the period 2019-2022. For this comparison, we do not apply the Numerator demographic weights (demo_weight) that are designed to balance the sample further to make it representative of the US

Census household characteristics.
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Figure A.3. Sectoral Heterogeneity in Price Changes
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Notes: Distribution of median 12-month product-level price changes within each product category by quarter derived from the Numerator data.
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B.2 BoL Panjiva Data
We construct the dataset using BoL records on U.S. imports from 2010 to 2023, taking conname as the
importer name and aggregating its shipments to measure imports.4 We keep only shipments with the
U.S. as the final destination5, retain only single–HS code shipments6, and drop records with redacted
or missing (cleaned) firm names, using the cleaning procedure described below.
We then aggregate the data to a firm–HS2–month panel by summing shipment volumes in TEU. To

ensure comparability with Numerator data, we restrict the sample to 2018–2023, balance the panel to
the minimum and maximum months for each firm–HS2 pair, and drop 2018 after constructing moving
cumulative measures. For each firm–HS2–month, we compute 2-, 3-, 4-, 5-, 6-, 9-, and 12-monthmoving
sums of shipment volumes.
To convert shipment volumes to values, we merge BoL data with U.S. Trade Online data at the HS2

level, applying 2019 TEU-to-KG conversion ratios. The monthly Census data from U.S. Trade Online
report containerized vessel values and weights (in kg) by 2-digit HS code. We first compute monthly
unit prices for each HS2 code in 2019, along with conversion factors between weights (Census) and
volumes (BoL) by dividing weight by volume for each HS2. These unit prices and conversion factors
are then applied to BoL monthly import volumes at the firm–HS2 level to estimate monthly import
values. Appendix Figure A.4 compares aggregate BoL import values with maritime U.S. imports from
Census. The two series coincide in 2019 by construction and track each other closely over time, with
BoL showing some underestimation in 2022.7

4Some importers are retailers rather than manufacturers. We verify that retailer imports are not conflated with those
of third-party companies selling products through the retail chain. Inspection of the Panjiva notifyparty field indicates that
shipments imported directly by retailers pertain to their own operations—whether for resale under private labels or for
other needs. When third-party sellers ship to a retailer, the BoL typically lists the manufacturer or seller as conname and the
retailer as notifyparty, often with the retailer’s name and address.

5Some shipments arrive at a U.S. port (e.g., Seattle) but are then forwarded to another country, such as Canada; we
exclude these.

6Shipments with multiple HS codes cannot be split reliably across codes and account for only a small share of the sample.
7This likely reflects the use of 2019 conversion factors for BoL import values, whereas import costs spiked in 2022.
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Figure A.4. US Imports over Time. Panjiva vs. Census

Notes: Aggregate imports in BoL Panjiva against USA Trade Online - U.S. Census Bureau imports data. Panjiva import volumes are indexed to the 2019 unit value of

an HS code in Census data.

Figure A.5. US Imports over Time. Panjiva vs. Census. Panjiva Firms Importing in 2019.

Notes: Total imports of a sample of firms with positive deliveries in 2019 against USA Trade Online - U.S. Census Bureau imports data. Panjiva import volumes are

indexed to the 2019 unit value of an HS code in the Census data.
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Figure A.6. Sectoral Heterogeneity in Delivery Shortfalls

Notes: Delivery shortfalls constructed as mean level deviations in the same month compared to the 2019 baseline, HS2 categories weighted with firm-level value shares.
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B.3 Numerator-BoL Panjiva Match
We match the Numerator and BoL Panjiva datasets using company names. In BoL, we primarily use
consignee names (conname) as the firm identifier, which often represent manufacturing companies but
can also include retailers. In some cases, U.S. multinational firms ship products directly from abroad to
U.S. locations, so their names may also appear as shippers in BoL. We retain the shipper names for our
matching procedure, too.
In Numerator, each product entry can be associated with multiple identifiers—manufacturer, parent

brand, and brand names—providing several avenues for linking to producers. Manufacturer names are
often missing from scanned receipts, and the data provider prioritizes supplementing this information
for high-sales products. As a result, larger firms are more likely to have manufacturer data, while it is
often absent for smaller firms or less significant products. Our sample contains 9,569 unique manufac-
turer names, 70,205 unique parent brand names, and 85,903 unique brand names. Examples include:

• PROCTER & GAMBLE COMPANY / REGENERIST OLAY / OLAY

• PRIVATE LABEL / PRIVATE LABEL / WALMART

• LEGO SYSTEMS, INC / DISNEY LEGO / LEGO

• APPLE INC. / APPLE / APPLE WATCH SERIES 8

These manufacturer–parent brand–brand combinations provide a strong basis for matching with
firm names in Panjiva. Numerator’s list of roughly 27,000 store names also helps identify Panjiva ship-
ments received by retail stores.
We clean and standardize names from both datasets to ensure consistency, building on routines such

as those implemented in Argente et al. (2020) and adding steps tailored to Panjiva’s idiosyncrasies. This
includes removing location details (city, country, zip code) frequently embedded in consignee names
(e.g., “LG ELECTRONICS PANAMA S.A.” or “TARGET ATLANTA GEORGIA 30309 USA”).
Matching begins from the Numerator, where each observation includes the manufacturer, parent

brand, and brand names. We perform exact matches with Panjiva consignee and shipper names using
a hierarchical approach: first matching manufacturer names, then parent brands, and finally brand
names to consignee names. If no match is found, we repeat the process using shipper names. This
procedure yields a comprehensive link between the two datasets, enabling the analysis of firm-level
price changes in relation to import activity. The matched Numerator–Panjiva sample relies on this link.
For unmatched firms, we still use manufacturer and parent brand names to define firm identifiers, but
drop observations where only the brand name is known to reduce noise.
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C Additional Empirical Results

Table A.3. Price Effects of Own Supply Chain Disruptions. I-stage Estimates

Col(3) I-stage Col(4) I-stage Col(5) I-stage
Shortfall Shortfall Lag Shortfall Shortfall Lag Shortfall

Shortfall exposure 0.479∗∗∗ 0.483∗∗∗ -0.066∗∗∗ 0.441∗∗∗ -0.099∗∗∗
(0.0178) (0.0162) (0.0164) (0.0160) (0.0162)

∆Dwell -0.163∗∗∗ -0.153∗∗∗ -0.078∗∗∗ -0.134∗∗∗ -0.063∗∗∗
(0.0145) (0.0145) (0.0156) (0.0142) (0.0156)

∆UnitC -0.056∗∗ -0.029 -0.021 -0.044∗ -0.033
(0.0257) (0.0254) (0.0255) (0.0252) (0.0253)

∆F reightC 0.258∗∗∗ 0.253∗∗∗ 0.038∗ 0.250∗∗∗ 0.036∗
(0.0210) (0.0209) (0.0204) (0.0206) (0.0204)

Lag Shortfall exposure 0.022 0.521∗∗∗ 0.042∗∗∗ 0.536∗∗∗
(0.0159) (0.0168) (0.0157) (0.0166)

Lag ∆Dwell -0.008 -0.096∗∗∗ -0.021∗ -0.106∗∗∗
(0.0125) (0.0136) (0.0123) (0.0136)

Lag ∆UnitC -0.039 -0.087∗∗∗ -0.021 -0.072∗∗∗
(0.0246) (0.0257) (0.0244) (0.0256)

Lag ∆F reightC 0.020 0.139∗∗∗ 0.028 0.145∗∗∗
(0.0218) (0.0228) (0.0216) (0.0227)

Observations 939819 939819 939819 939819
F-test of excl. instruments 371.99 229.73 274.32 193.20 300.44

Notes: The table reports I-stage estimates for columns (3)-(5) in Table 2. Standard errors, clustered at the product category–quarter level, are reported in
parentheses. ∗∗∗, ∗∗, ∗: significance at the 1%, 5%, 10% levels, respectively.
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Table A.4. Price Effects of Own Supply Chain Disruptions: By Product Durability

∆p
Benchmark IV Durability Index Durability Dummy

Shortfall 0.272∗∗∗ 0.116 0.261∗∗∗
(0.0822) (0.1221) (0.0803)

Shortfall × Durability Index 3.197
(2.5267)

Shortfall × Durability Dummy 0.074
(0.0993)

∆UnitC 0.032 0.027 0.030
(0.0671) (0.0674) (0.0672)

∆F reightC 0.032 0.004 0.032
(0.0590) (0.0606) (0.0587)

Lag ∆UnitC 0.220∗∗∗ 0.223∗∗∗ 0.219∗∗∗
(0.0671) (0.0672) (0.0672)

Lag ∆F reightC 0.226∗∗∗ 0.223∗∗∗ 0.227∗∗∗
(0.0547) (0.0548) (0.0547)

Firm FE ✓ ✓ ✓
Cat-Quarter FE ✓ ✓ ✓
Observations 939819 939819 939819
Weak IV F-stat 337.650 20.994 196.871

Notes: The table reports regressions analogous to the benchmark IV own-pass-through estimate in column (5) of Table 2, but with shortfalls interacted
with the Durability Index (column 2) and the Durability Dummy (column 3). Product durability is constructed based on the product purchase frequency,
following Argente et al. (2020). Standard errors, clustered at the product category–quarter level, are reported in parentheses. ∗∗∗, ∗∗, ∗: significance at
the 1%, 5%, 10% levels, respectively.
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Table A.5. Strategic Interactions. I stage

Col(3) I-stage Col(4) I-stage Col(5) I-stage
Shortfall Shortfall Shortfall

Shortfall exposure 0.480∗∗∗ 0.381∗∗∗ 0.374∗∗∗
(0.0176) (0.0156) (0.0156)

∆Dwell 0.171∗∗∗ 0.343∗∗∗ 0.352∗∗∗
(0.0138) (0.0101) (0.0104)

∆UnitC 0.052∗∗ 0.022 0.053∗∗
(0.0245) (0.0235) (0.0242)

∆F reightC -0.263∗∗∗ -0.371∗∗∗ -0.309∗∗∗
(0.0198) (0.0108) (0.0159)

Shortfall, compet -0.584∗∗∗ -0.451∗∗∗
(0.0077) (0.0062)

∆UnitC , compet 0.054 0.068
(0.0645) (0.0476)

∆F reightC , compet -0.117∗∗ -0.084∗∗∗
(0.0455) (0.0326)

Shortfall, compet Imp. -0.433∗∗∗
(0.0066)

Shortfall, compet Non-Imp. -0.482∗∗∗
(0.0067)

∆UnitC , compet Imp. -0.041
(0.0563)

∆UnitC , compet Non-Imp. 0.244∗∗∗
(0.0489)

∆F reightC , compet Imp. -0.156∗∗∗
(0.0365)

∆F reightC , compet Non-Imp. 0.001
(0.0339)

Observations 961451 1671773 1671773
F-test of excl. instruments 387.07 705.38 707.17

Notes: The table reports I-stage estimates for columns (3)-(5) in Table 3. Standard errors, clustered at the product category–quarter level, are reported in
parentheses. ∗∗∗, ∗∗, ∗: significance at the 1%, 5%, 10% levels, respectively.
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