Is Tourism Good for Locals? Evidence from Barcelona

Treb Allen¹ Simon Fuchs³ Sharat Ganapati⁴ Alberto Graziano² Rocio Madera⁵ Judit Montoriol-Garriga²

¹Dartmouth College

²CaixaBank Research

³FRB Atlanta

⁴Georgetown University

⁵Southern Methodist University

September 2, 2020

The views expressed herein are those of the authors and not necessarily those of CaixaBank, the Federal Reserve Bank of Atlanta, or the Federal Reserve System.

Tourism is important

- Big part of the economy
 - Accounts for 7pc of world exports and 330m jobs
 - In Spain: Tourism equals 50pc of total goods exports (11pc of GDP)
- Growing part of the economy
 - 50pc increase globally in past 10 years
 - In Spain: Second fastest growing sector
- Increase in export demand ought to be welfare improving?

Local Backlash against Tourism

This Paper: Three Contributions

- 1. New intra-city spatial patterns of consumption for locals and tourists
 - Raw data: 500M electronic payments in Metro Area of Barcelona
 - Bilateral expenditure flows b/w 1,000 census blocks (orig-dest-product-month)
- 2. Urban **Specific Factor Model** with rich geography
 - Complex spatial patterns of consumption and production
 - Welfare effects depend on trade-off between income effects vs price effects
 - Intuitive analytical expression enabling intra-city welfare analysis
- 3. "Hybrid" empirical approach marrying applied & general equilibrium tools
 - Use GE theory to design non-parametric regressions
 - Use plausibly exogenous variation in tourist composition to estimate them

Literature

Urban Quantitative Spatial Economics

• Ahlfeldt et al. (2015), Monte et al. (2018), Allen and Arkolakis (2016)

Big Data Spatial Economics

• Athey et al. (2018), Athey et al. (2020), Couture (2016), Couture et al. (2020), Davis et al. (2019), Agarwal et al. (2017), Carvalho et al. (2020)

Impact of Tourism

• Almagro and Domínguez-Iino (2019), García-López et al. (2019), Faber and Gaubert (2019)

Ricardo-Viner trade models

 Mussa (1974), Mussa (1982), Jones (1975), Kovak (2013), Dix-Carneiro and Kovak (2017)

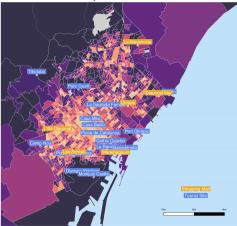
Outline

- 1. New Intra-city Patterns of Consumption
- 2. Urban Specific Factors Model with Rich Geography
- 3. Empirics & Welfare Effects

New Intra-city Patterns of Consumption

A new Spatial Dataset for Barcelona

- Electronic transaction data from Caixa Bank (CXBK)
 - Account data for customers + point-of-sale data
 - Annually: 165+M transactions, 3B Euros of value (3pc of GDP)
 - January 2017 December 2019
- Our data:
 - Locals (bilateral): 1095 residential tiles x 1095 cons tiles x 20 sectors x 36 months
 - Tourists: country of origin × 1095 cons tiles × 20 sectors × 36 months
- Other data:
 - Commuting data (from mobile phone locations)
 - Housing prices (from "Spanish Zillow")

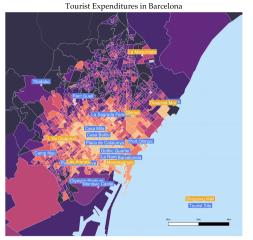

Three Stylized Facts

- 1. Tourism is spatially concentrated
- 2. Local's consumption geographies differ by residence
- 3. Tourist consumption crowds out local consumption

Three Stylized Facts

- 1. Tourism is spatially concentrated
- 2. Local's consumption geographies differ by residence
- 3. Tourist consumption crowds out local consumption

Fact 1: Tourism is spatially concentrated

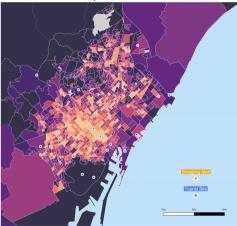


Local Expenditures in Barcelona

Average Yearly Expenditure per sqm in EUR

0E/m2-1E/m2 2E/m2-5E/m2 8E/m2-13E/m2 20E/m2-30E/m2 45E/m2-73E/m2

 $1E/m2 - 2E/m2 \ 5E/m2 - 8E/m2 \ 13E/m2 - 20E/m2 \ 30E/m2 - 45E/m2 \ 73E/m2 - 733E/m2 = 732E/m2 = 732E/m2$

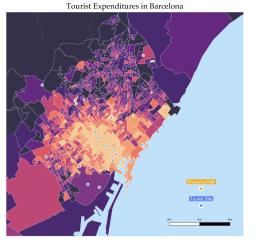


Average Yearly Expenditure per sqm in EUR

0 E/m2 - 0.7 E/m2 1.6 E/m2 - 2.6 E/m2 3.8 E/m2 - 6 E/m2 9.4 E/m2 - 17.4 E/m2 32.3 E/m2 - 70.3 E/m2

0.7 E/m2 - 1.6 E/m2 - 2.6 E/m2 - 3.8 E/m2 6 E/m2 - 9.4 E/m2 17.4 E/m2 - 32.3 E/m2 70.3 E/m2 - 2188.6 E/m2

Fact 1: Tourism is spatially concentrated



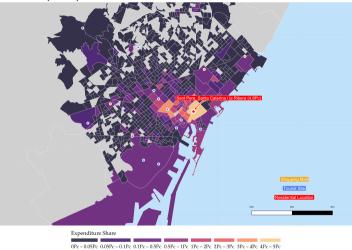
Local Expenditures in Barcelona

Average Yearly Expenditure per sqm in EUR

0E/m2-1E/m2 2E/m2-5E/m2 8E/m2-13E/m2 20E/m2-30E/m2 45E/m2-73E/m2

1E/m2-2E/m2 5E/m2-8E/m2 13E/m2-20E/m2 30E/m2-45E/m2 73E/m2-733E/m2

Average Yearly Expenditure per sqm in EUR


 $0\ {\rm E}/{\rm m2} - 0.7\ {\rm E}/{\rm m2} = 1.6\ {\rm E}/{\rm m2} - 2.6\ {\rm E}/{\rm m2} = 3.8\ {\rm E}/{\rm m2} - 6\ {\rm E}/{\rm m2} = 9.4\ {\rm E}/{\rm m2} = 17.4\ {\rm E}/{\rm m2} = 32.3\ {\rm E}/{\rm m2} - 70.3\ {\rm E}/{\rm m2} = 10.4\ {\rm E}/{\rm m2}$

0.7 E/m2 - 1.6 E/m2 - 2.6 E/m2 - 3.8 E/m2 6 E/m2 - 9.4 E/m2 17.4 E/m2 - 32.3 E/m2 70.3 E/m2 - 2188.6 E/m2

Three Stylized Facts

- 1. Tourism is spatially concentrated
- 2. Local's consumption geographies differ by residence
- 3. Tourist consumption crowds out local consumption

Fact 2: Local's consumption geographies differ by residence

Spatial Expenditure Shares for a Resident of Sant Pere, Santa Caterina i la Ribera

Three Stylized Facts

- 1. Tourism is spatially concentrated
- 2. Local's consumption geographies differ by residence
- 3. Tourist consumption crowds out local consumption

Fact 3: Tourist consumption crowds out local consumption

Delta Tourist Ex

Change Tourist and Local Expenditure (August vs February 2019, Euro/m2)

Inner COR Ferreric Desering (2014)

Urban Specific Factors Model

A Specific Factors Trade Model with rich Urban Geography

- Specific Factors
 - Production requires local labor and an (externally owned) specific factor.
- Trade Model
 - Numeraire sector s = 0 costlessly traded.
 - Sectors $s \in 1, ..., S$ consumed by locals and tourists.
 - Total tourism expenditure exogenously given (tourist "shock").
- Rich Urban Geography
 - *N* locations. A good is a sector x location.
 - A local residing in block *n* chooses what goods to (spatially) consume & produce.

Intuitive analytical expression for intra-city welfare analysis

Theorem (Welfare Effect of a Shock)

Consider a representative local with **homothetic preferences** residing in block n. Applying envelope theorem to consumption, production optimization problems yields:

$$d \ln u_n = \underbrace{\sum_{i,s} \sigma_{ni,s} \times \partial \ln w_{is}}_{\Delta Spatial \ Income} - \underbrace{\sum_{i,s} \pi_{nis} \times \partial \ln p_{is}}_{\Delta Spatial \ Price \ Index}.$$

- Estimating the welfare effects of tourism requires:
 - Commuting data $\{\sigma_{ni}\}_{n=1,i=1}^{N,N}$
 - Spatial Expenditure data $\{\pi_{ni,s}\}_{n=1,i=1,s=0}^{N,N,S}$
 - Estimates of key elasticities: $\left\{\frac{\partial \ln p_{is}}{\partial \ln E_i^T}, \frac{\partial \ln w_i}{\partial \ln E_i^T}\right\}_{i=1,s=0}^{N,S}$

Empirics & Welfare effects

Empirics

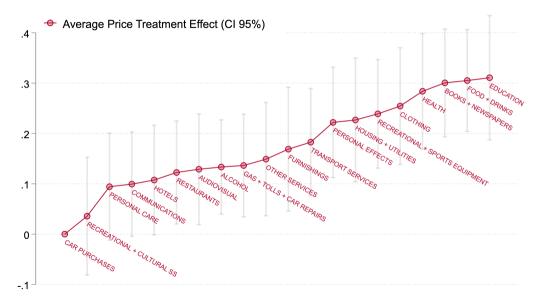
1. A "deductive" approach: Simple regressions

- Advantage: Intuitive
- Disadvantage: Average elasticities, SUTVA assumption (no GE effects)
- 2. An "inductive" approach: Theoretical predictions
 - Advantage: Heterogeneous treatment effects for welfare
 - Disadvantage: Additional assumptions (e.g. market clearing, functional form)
- 3. Hybrid Approach: Theory predicts the welfare effects, data validates.

Empirics

- **1. Deductive Approach**
- 2. Inductive Approach
- 3. Hybrid Approach

Deductive Approach

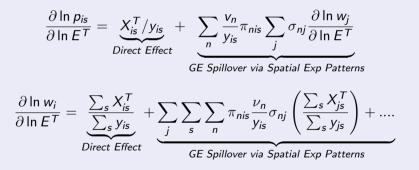

• Idea: Recover average treatment effects from regressions

$$\Delta \ln p_{ismt} = \gamma_{is} + \gamma_{ts} + \beta_s^p \times \Delta \log E_{itm}^T + \epsilon_{ismt}, \qquad (1)$$

$$\Delta \ln w_{imt} = \gamma_{it} + \gamma_{im} + \gamma_{tm} + \beta^{w} \times \Delta \log E^{T}_{itm} + \epsilon_{imt}, \qquad (2)$$

- Recover prices from gravity fixed effects, i.e. $\Delta \ln p_{ismt} = \frac{1}{1-\sigma_s} \Delta \ln \delta_{istm}$
- Recover wages from gravity commuting model, i.e. $w_{imt} = \sum_{n=1}^{N} \left(\frac{L_{ni}}{R_n}\right) v_{nmt}$
- Bartik decomposes expenditures into group composition and seasonal demand
 Bartik Detail First Stage Tourist By Origin
- Note: Empirically impractical to estimate $\left\{\beta_{i,s}^{p},\beta_{i}^{w}\right\}$

Average Price effects by Sector (β_s^p)


Empirics

- 1. Deductive Approach
- 2. Inductive Approach
- 3. Hybrid Approach

Analytical Expression for Price and Wage effects

Theorem ('Short Run' Elasticities for Prices and Wages)

Imposing market clearing, wage equalization within location *across sectors, and* keeping expenditure shares and labor allocation constant, we can obtain,

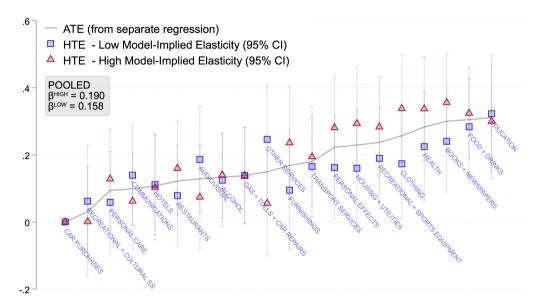
• Note: In the paper we do long run elasticities too using "exact hat"

Empirics

- 1. Deductive Approach
- 2. Inductive Approach
- 3. Hybrid Approach

Hybrid Approach

- Idea: GE theory predicts locations that are most/least affected & data validates
- Non-parametric regressions with theory predicted bins

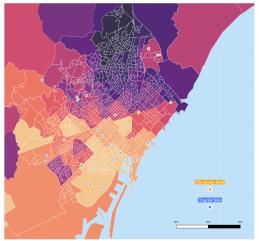

 $\Delta \ln p_{ismt} = \gamma_{is} + \gamma_{ts} + \beta_s^{p,high} \times \mathbb{1}_{is}^{p,high} \times \Delta \log E_{imt}^T + \beta_s^{p,low} \times \mathbb{1}_{is}^{p,low} \times \Delta \log E_{imt}^T + \epsilon_{ismt}$ $\Delta \ln w_{imt} = \gamma_i + \gamma_t + \beta^{w,high} \times \mathbb{1}_i^{w,high} \times \Delta \log E_{imt}^T + \beta^{w,low} \times \mathbb{1}_i^{w,low} \times \Delta \log E_{imt}^T + \epsilon_{imt}$

where

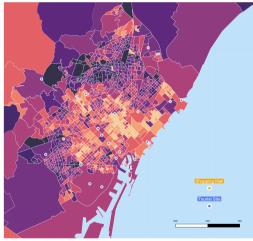
$$\begin{split} \mathbb{1}_{is}^{p,high} &= \mathbb{1}\left\{\eta_{is}^{p} > \textit{median}\left(\eta_{is}^{p}\right)|s\right\}\\ \mathbb{1}_{is}^{p,\textit{low}} &= \mathbb{1}\left\{\eta_{is}^{p} \leq \textit{median}\left(\eta_{is}^{p}\right)|s\right\} \end{split}$$

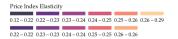
Non-parametrically identifies heterogenous treatment effects

Heterogeneous Price Effects by Sector ($\beta_s^{p,low}, \beta_s^{p,high}$)

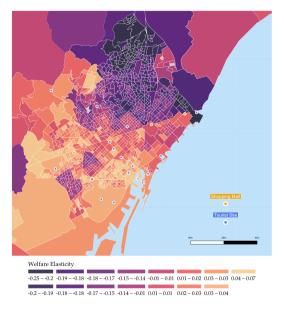

Heterogeneous Income Effects

	(1)	(2)
	First Stage	SR
S.In(Tourist Expenditures)	0.0530**	0.00326
	(0.0173)	(0.0109)
x Short Run Wage Elasticity $>$ Median		0.289**
		(0.0940)
Observations	24238	24238
IV	1	1
FE location-year	1	1
FE year-month-type	1	1
FE location-month	1	1


Standard errors in parentheses


* p < 0.05, ** p < 0.01, *** p < 0.001

Hybrid: Income and Price Index Effects



Hybrid: Welfare Effects

Is tourism good for locals?

- Results (February vs July \approx 70.3pc increase in Tourist Exp)
 - Median Welfare deterioration of 8.6pc
 - Substantial heterogeneity
 - 10th percentile: -13.65pc
 - 90th percentile: +2.5pc

Conclusion

Conclusion

New Data

• New intra-city spatial patterns of consumption for locals and tourists

New Theory

• Urban Specific Factors model for intra-urban welfare analysis

New Methodology

• Estimate welfare effects by "hybrid" approach

New Insights

• On average tourism hurts locals, but large heterogeneity

Bibliography

- Agarwal, S., Jensen, J. B. and Monte, F. (2017). Consumer Mobility and the Local Structure of Consumption Industries, *NBER Working Papers 23616*, National Bureau of Economic Research, Inc.
 - **URL:** *https://ideas.repec.org/p/nbr/nberwo/23616.html*
- Ahlfeldt, G. M., Redding, S. J., Sturm, D. M. and Wolf, N. (2015). The economics of density: Evidence from the berlin wall, *Econometrica* **83**(6): 2127–2189.

URL: https://onlinelibrary.wiley.com/doi/abs/10.3982/ECTA10876

- Allen, T. and Arkolakis, C. (2016). Optimal City Structure, 2016 Meeting Papers 301. URL: https://ideas.repec.org/p/red/sed016/301.html
- Almagro, M. and Domínguez-lino, T. (2019). Location sorting and endogenous amenities: Evidence from amsterdam.
- Athey, S., Blei, D., Donnelly, R., Ruiz, F. and Schmidt, T. (2018). Estimating heterogeneous consumer preferences for restaurants and travel time using mobile location data, AEA Papers and Proceedings 108: 64–67.

URL: *https://www.aeaweb.org/articles?id=10.1257/pandp.20181031*

Athey, S., Ferguson, B., Gentzkow, M. and Schmidt, T. (2020). Experienced segregation.

Carvalho, V., R. Garcia, J., Hansen, S., Ortiz, Á., Rodrigo, T., Rodriguez Mora, S. and Ruiz, J. (2020). Tracking the covid-19 crisis with high-resolution transaction data, *WorkingPaper* 2020/16.

Additional Data

- Idealista imputed data on housing price trends (Euro/m2)
 - Frequency: Monthly
 - Time Period: January 2010 June 2020
 - Spatial Resolution: Neighborhoods in Barcelona (Barrios)
 - Available for rental rates and housing prices

Consumption of Locals

• Nested CES preferences across sectors and locations with elasticities $\{\sigma_s, \eta\}$

$$u_n = \frac{v_n}{\left(\sum_{s=0}^{S} \alpha_s \left(\left(\sum_{i=1}^{N} \gamma_{is} \tau_{isn}^{1-\sigma_s} p_{is}^{1-\sigma_s} \right)^{\frac{1}{1-\sigma_s}} \right)^{1-\eta} \right)^{\frac{1}{1-\eta}}} B_n$$

• Demand function,

$$X_{isn} = \left(\frac{\tau_{isn}^{1-\sigma_s} p_{is}^{1-\sigma_s}}{\sum_j \tau_{jsn}^{1-\sigma_s} p_{js}^{1-\sigma_s}}\right) \alpha_{n,s} v_n$$

where $\alpha_{n,s}$ corresponds to the nested CES sectoral expenditure share

Consumption of Tourists

• For tourists we abstract from bilateral trade costs and define symmetrically,

$$X_{is}^{T} = \left(\frac{\gamma_{is}^{T} p_{is}^{1-\sigma_{s}}}{\sum_{j} \gamma_{js}^{T} p_{js}^{1-\sigma_{s}}}\right) \alpha_{s}^{T} E^{T},$$

where α_s^T corresponds to the nested CES sectoral expenditure share

back

Production and Labor supply

• Production with a Cobb-Douglas production function with a specific factor,

$$Q_{is} = A_{is} L_{is}^{\beta_s} K_{is}^{1-\beta_s}.$$

• Labor Supply is defining disposable income,

$$\mathbf{v}_{n} = \left(\sum_{i} \mu_{ni}^{-\theta} \mathbf{w}_{i}^{\theta}\right)^{\frac{1}{\theta}}$$

• which generates

$$L_{ni} = \frac{\mu_{ni}^{-\theta} w_i^{\theta}}{\sum_{i,s} \mu_{ni}^{-\theta} w_i^{\theta}} L_n$$

Equilibrium

For any initial distribution of residential labor endowment $\{R_i\}$, a given level tourist expenditures $\{E^T\}$, a given level of sector-location factor endowment $\{M_{is}\}$, parameters defining the preference and production structure $\{\sigma_s, \eta, \alpha_s, \beta_s, \theta\}$, and geography $\{A_{i,s}, \gamma_{is}, \gamma_{i,s}^T, \tau_{nis}, \mu_{ni}\}$, an equilibrium is $\{w_i, p_{is}\}$ s.t.

1. Sector-location specific market clearing

$$p_{is}Q_{is} = \sum_{n} \left(\frac{\tau_{isn}^{1-\sigma_s} p_{is}^{1-\sigma_s}}{\sum_{j} \tau_{jsn}^{1-\sigma_s} p_{js}^{1-\sigma_s}} \right) \alpha_s \left(\sum_{i} \mu_{ni}^{-\theta} w_i^{\theta} \right)^{\frac{1}{\theta}} + X_{is}^{T}$$

2. Labor Market clearing

$$L_{i}\sum_{s}\frac{1}{\beta_{s}}w_{i}\left(\frac{L_{is}}{L_{i}}\right) = \sum_{s}\sum_{n}\left(\frac{\tau_{isn}^{1-\sigma_{s}}p_{is}^{1-\sigma_{s}}}{\sum_{j}\tau_{jsn}^{1-\sigma_{s}}p_{js}^{1-\sigma_{s}}}\right)\alpha_{s}\left(\sum_{i}\mu_{ni}^{-\theta}w_{i}^{\theta}\right)^{\frac{1}{\theta}} + \sum_{s}X_{is}^{T}$$

	(1)		
	S.In Tourists Expenditures		
Tourists, group component of ivT	0.602***		
	(0.106)		
Observations	24238		
F	32.05		
FE location-year	1		
FE year-month	1		
FE location-month	1		

Standard errors in parentheses

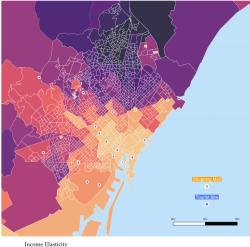
 * ho < 0.05, ** ho < 0.01, *** ho < 0.001

back

Inductive Approach: Exact Hat Algebra

• Goods market clearing condition

$$\hat{\rho}_{is}^{\frac{1}{1-\beta_{s}}} \hat{w}_{i}^{-\frac{\beta_{s}}{1-\beta_{s}}} = \sum_{n} \left(\frac{X_{nis}}{y_{is}}\right) \frac{\left(\left(\sum_{i=1}^{N} \pi_{nis} \hat{\rho}_{is}^{1-\sigma_{s}}\right)^{\frac{1}{1-\sigma_{s}}}\right)^{1-\eta}}{\sum_{s=0}^{S} \left(\left(\pi_{n,s}\right) \left(\left(\sum_{i=1}^{N} \pi_{nis} \hat{\rho}_{is}^{1-\sigma_{s}}\right)^{\frac{1}{1-\sigma_{s}}}\right)^{1-\eta}\right)} \frac{\hat{\rho}_{is}^{1-\sigma_{s}}}{\sum_{j} \pi_{jsn} \hat{\rho}_{js}^{1-\sigma_{s}}} + \frac{X_{is}^{T}}{y_{is}} \frac{\left(\left(\sum_{i=1}^{N} \pi_{is}^{T} \hat{\rho}_{is}^{1-\sigma_{s}}\right)^{\frac{1}{1-\sigma_{s}}}\right)^{1-\eta}}{\sum_{s=0}^{S} \left(\pi_{s}^{T} \left(\left(\sum_{i=1}^{N} \pi_{is}^{T} \hat{\rho}_{is}^{1-\sigma_{s}}\right)^{\frac{1}{1-\sigma_{s}}}\right)^{1-\eta}\right)} \frac{\hat{\rho}_{is}^{1-\sigma_{s}}}{\sum_{j} \left(\pi_{js}^{T}\right) \hat{\rho}_{js}^{1-\sigma_{s}}} \hat{\mathcal{E}}^{T},$$
(3)

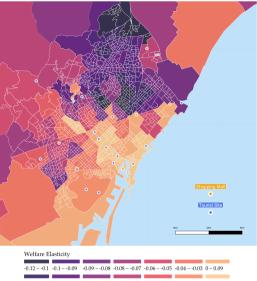

• Labor Market clearing condition,

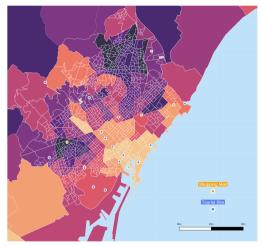
$$\sum_{s} \left(\frac{\beta_{s} y_{is}}{\sum_{s} \beta_{s} y_{is}} \right) \hat{\rho}_{is}^{\frac{1}{1-\beta_{s}}} \hat{w}_{i}^{-\frac{\beta_{s}}{1-\beta_{s}}} = \sum_{n} \sigma_{ni} \left(\frac{R_{n} w_{i}}{\sum_{s} \beta_{s} y_{is}} \right) \frac{\hat{w}_{i}^{1+\theta}}{\sum_{j} \sigma_{nj} \hat{w}_{j}^{\theta}}.$$

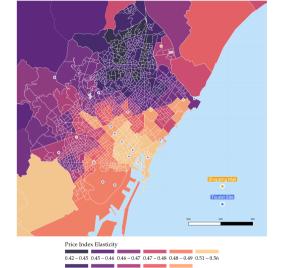
Inductive Approach: Calibration

- Factor share of labor, $\beta_s = .66$
- Labor Supply elasticity $\theta = 3.3$ (Monte et al.; 2018)
- Lower nest elasticity of substitution $\sigma_s = 3.9$ (Hottman et al.; 2016)
- Upper nest elasticity of substitution $\eta = 1.8$

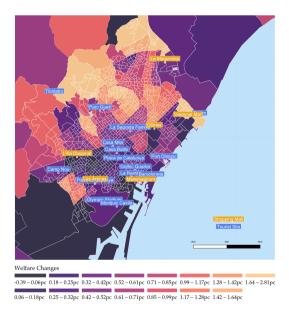
back




•


0.02 - 0.04 0.05 - 0.05 0.06 - 0.07 0.08 - 0.08 0.09 - 0.1 0.11 - 0.13 0.16 - 0.19 0.29 - 0.49

0.04 - 0.05 0.05 - 0.06 0.07 - 0.08 0.08 - 0.09 0.1 - 0.11 0.13 - 0.16 0.19 - 0.29

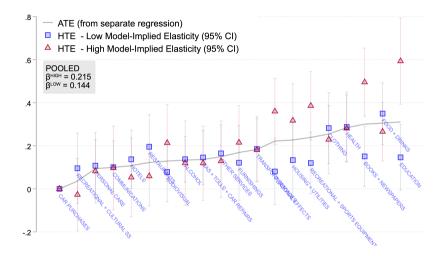

-0.1 --0.1 -0.09 --0.09 -0.08 --0.08 -0.07 --0.06 -0.05 --0.04 -0.03 - 0 0.09 -0.22

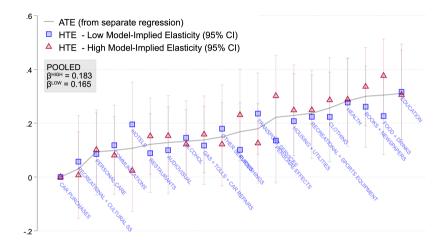
0.45 - 0.45 0.46 - 0.46 0.47 - 0.47 0.48 - 0.48 0.49 - 0.51

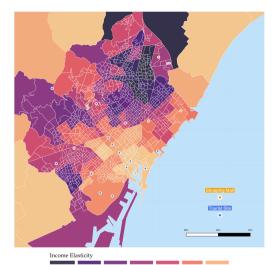
Bartik

• Local Expenditure growth can be decomposed into,

$$g_{i}^{T} = \underbrace{\sum_{g} \varsigma_{i,g|i} \times g_{E_{g}}^{T}}_{\text{Group Composition}} + \underbrace{\sum_{g} \sum_{s} \varsigma_{i,s,g|i} \times g_{\kappa,s,g}^{T}}_{\text{Seasonal Demand}}$$

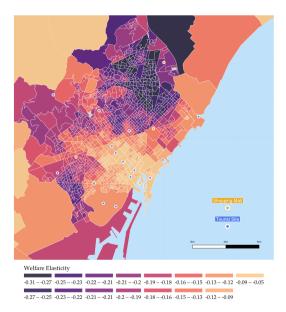

• initial group composition and initial consumption shares are given by,

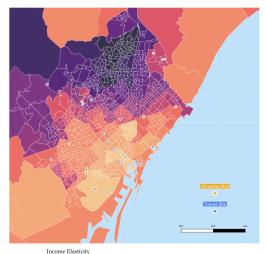

$$\varsigma_{i,s,g|i} \equiv \frac{E_{i,s,g}^{T}}{E_{i}^{T}} \quad \varsigma_{i,g|i} \equiv \frac{E_{i,g}^{T}}{E_{i}^{T}}$$

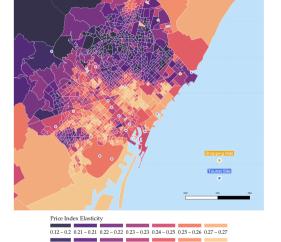

• and where changes in total group's income and in within-group category spending are given by,

$$g_{E_g}^T \equiv rac{\Delta E_g^T}{E_g^T} \quad g_{\kappa,sg}^T = rac{\Delta \kappa_{sg}^T}{\kappa_{sg}^T}$$

 Initial Shares exogenous i.e. orthogonal to local amenity shifts (Goldsmith-Pinkham et al.; 2018)

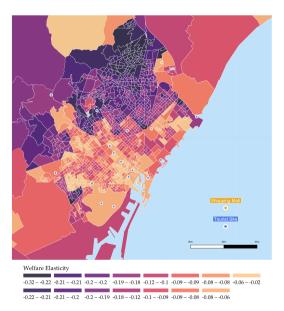




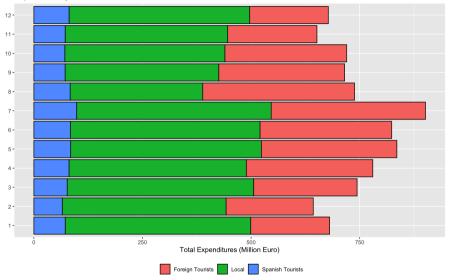


0.22 - 0.22 0.23 - 0.23 0.24 - 0.24 0.25 - 0.25 0.26 - 0.26 0.27 - 0.27 0.28 - 0.32

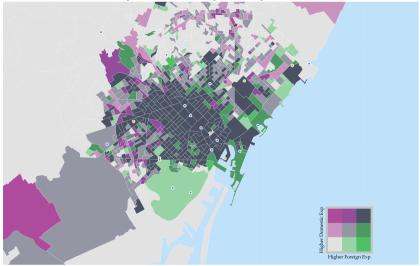
-0.01 - 0.01 0.01 - 0.03 0.04 - 0.04 0.05 - 0.06 0.06 - 0.08 0.08 - 0.1 0.11 - 0.13 0.01 - 0.01 0.03 - 0.04 0.04 - 0.05 0.06 - 0.06 0.08 - 0.08 0.1 - 0.11 0.13 - 0.14



 $0.2 - 0.21 \ \ 0.21 - 0.22 \ \ 0.22 - 0.23 \ \ 0.23 - 0.24 \ \ 0.25 - 0.25 \ \ 0.26 - 0.27 \ \ 0.27 - 0.33$



	(1)	
	S.In Income	
S.In Tourists Expenditures	0.0530**	
	(0.0173)	
Observations	24238	
IV Bartik	1	
FE location-year	1	
FE year-month	1	
FE location-month	1	


Standard errors in parentheses

 * ho < 0.05, ** ho < 0.01, *** ho < 0.001

Expenditure by Month

Source: CXBK Payment Processing (2019)

Spanish Tourists vs Foreign Tourist Expenditures

nave COBE Payment Deceming (2024)

Estimate gravity equation for commuting flows

$$\log(\sigma_{ij}) = \alpha \log(\tau_{ni}) + \gamma_n + \delta_i + \epsilon_{ni}$$

	(1) PPML	(2) OLS	(3) PPML	(4) OLS
Log(Distance)	-4.628*** (0.313)	-2.121*** (0.138)		
Distance			-0.485*** (0.0294)	-0.127*** (0.0156)
Observations	11449	1633	11449	1633
FE: Origin	1	1	1	1
FE: Destination	1	1	1	1

Standard errors in parentheses

 * p < 0.05, ** p < 0.01, *** p < 0.001

Simple Theory: Overview

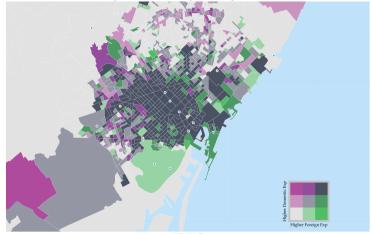
• Change in utility can be expressed as,

$$d \ln u_i = \partial \ln v_i - \sum_s \pi_{is} \partial \ln p_{is}$$

• Applying an envelope condition we can further simplify,

$$d\ln u_i = \sum_s \left(\sigma_{is} - \pi_{is}\right) \partial \ln p_{is}$$

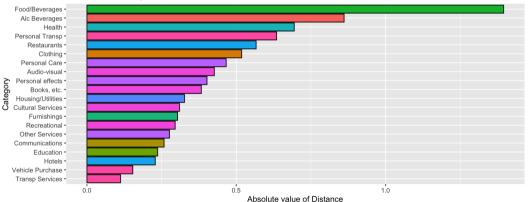
- Tourism is beneficial if *i* is a net producer of the tourist sector
- If residents allocate their labor to maximize income, we obtain,


$$d\ln v_n = \sum_{i,s} \sigma_{nis} \partial \ln w_{is},$$

Inductive Approach: Outline

- Quantitative Urban Ricardo-Viner model in exact hat algebra DEK Equations
- Calibration using literature values Calibration
- Two exercises:
 - Short-run impact: Adjustment of consumption only DEK SR Results
 - Long-run impact: Adjustment of both consumption and labor allocations (

Tourist's consumption geographies differ by their origin


Spanish Tourists vs Foreign Tourist Expenditures

Stylized Facts

Estimate gravity equation for consumption flows

$$\log \pi_{nis} = \phi_s \log \tau_{ni} + \log \delta_{n,s} + \log \delta_{i,s} + u_{ni,s},$$

Distance Elasticity

Source: CXBK Payment Processing (2019)